Fitness and Medical News from Bethesda Fitness,Eric Greenberg MD CPT

This weightlifting workout in your 60s can preserve strength for years

Older people had stronger leg muscles years after a 12-month weightlifting program than those who did moderate strength training.

By Leo Sands -Washington PostJune 19, 2024 

It’s never too late to start lifting weights — and now there are more signs it can provide enduring health benefits for older people.

Researchers at the University of Copenhagen in Denmark found that regularly lifting weights for a year in your mid-60s can preserve the strength of your leg muscles for years to come. Here are the key findings:

  • Retirement-age people who underwent a 12-month weight lifting training regimen had noticeably stronger leg muscles three years after finishing the program than those who did more moderate strengthening exercises or none at all, the study found.

  • The weight lifting training group visited a commercial gym three times a week for a year and repeatedly lifted what was considered a heavy load: 70 to 85 percent of the maximum weight a person can physically lift at one time.

  • Although the supervised program lasted only a year, scientists followed up three years later. Individuals in the “heavy” weight lifting cohort were the only participants to have maintained, on average, the leg strength they had before they began the training program.

Notably, leg strength is a critical indicator of wider health and mobility among older people. The findings add to a growing body of evidence suggesting that weightlifting can help older people stave off frailty and stay healthy as they age.

“Leg strength is really important,” Mads Bloch-Ibenfeldt, a medical researcher at the University of Copenhagen who co-wrote the study, said in a phone interview Wednesday. “We use the legs in a lot of everyday tasks, like getting up and down from a chair. So it’s important for reducing the risk of falls, and for a lot of everyday tasks we do.”

The weight lifting workout

As part of the study, scientists at a university hospital in Copenhagen divided 451 people at retirement age into three randomized groups, each tasked with completing a different one-year exercise regimen.

  • The “heavy” weight lifting training group visited a commercial gym three times a week for a supervised program of full-body strength training.

  • Participants determined the most weight they could lift at one time using typical weight machines found in gyms. Then they calculated 70 to 85 percent of their one-rep maximum and used that weight in their training. So if the most they could lift at one time was 100 pounds, they used 70- to 85-pound weights in their training.

  • They trained 3 times a week, doing three sets of every exercise. Each set included 6 to 12 repetitions.

  • The routine included a mixture of nine upper and lower body exercises: leg press, knee extension, leg curl, ankle plantar flexion exercises, hip abduction, low rowing, chest press, abdominal crunches and lower back exercises.

  • Although the scientists described the regimen as “heavy” weight lifting compared to two other groups in the study, the weight training program may be similar to many standard weight training routines.

Heavy weight training vs. moderate resistance

The second group underwent a year-long moderate intensity training regimen using body weight and resistance bands three times a week. The resistance bands were less challenging than the heavy group’s weights — about 50 to 60 percent of the maximum weight a person can lift at one time.

The third cohort was a control group who did less than one hour of strenuous exercise a week.

Over four years, scientists observed participants’ physical strength, including leg strength, handgrip strength and lean leg mass. Researchers measured participants’ strength at the beginning of the supervised 12-month training regimen, then again after it ended. They followed up again one year after it finished, and three years after it ended.

After three years, researchers noted that a small minority of exercise participants had continued with the same program of their own accord, yet the benefits of the heavy training workout were maintained.

“We found that if you did one year of resistance training with heavy weights, you were able to maintain the strength in your legs that you had when you began the study,” Bloch-Ibenfeldt said.

The other groups were found to have lost strength from their baselines. Four years after the start of the study, leg strength performance decreased on average among those in the moderate intensity training cohort and the non-exercising control group — although more significantly among the latter. Those who did the moderate program initially benefited from increased leg strength at the end of the one-year regimen, but those benefits did not endure: After four years, their strength was less than it had been at baseline.

The scientists observed that all three groups, including those lifting the heaviest weights, exhibited diminished handgrip strength and a lower lean leg mass after four years.

But the fact that the heavy lifting group had maintained their baseline leg strength while losing lean leg mass was notable, the authors observed, underscoring some of the potential neuromuscular benefits of weight training beyond building muscle.

“Neural adaptations influence the response to resistance training,” they wrote. “In conclusion, we showed that in a group of well-functioning older adults around retirement age, one year of (heavy resistance training) may induce long-lasting beneficial effects by preserving muscle function.”

At the end of the study, the average age of the 369 remaining participants was 71 years old and included 61 percent women.

The researchers noted that the participants were likely to be healthier and more active than the average aging population, given that they averaged almost 10,000 daily steps as a sample group. They noted that this group was not necessarily a representative sample of the wider population.

Also, the one-year training regimen, was supervised, with people’s technique and load monitored and adjusted, meaning it might be difficult for people to replicate on their own.

Why leg strength matters as we age

According to research by the National Institute on Aging, age-related loss of muscle mass and strength — known as sarcopenia — is a significant contributor to limited mobility in older age, which in turn can threaten a person’s physical independence. Older people with limited mobility can have difficulty walking, ascending stairs, and getting out of chairs.

Leg strength in particular — which is crucial for balance and mobility — is associated with better health outcomes for older adults. Research suggests that people older than 50 with lower levels of leg power are more likely to also experience chronic health conditions, although more research is needed.

Federal guidelines suggest adults older than 65 should do muscle-strengthening activities every week, as well as regular aerobic activity and exercises to improve balance.

“In addition to aerobic activity, older adults need to do things to strengthen muscles at least 2 days a week. Do muscle-strengthening activities to the point where it’s hard to do another repetition without help,” the Centers for Disease Control guidance states. According to the CDC, this could include lifting weights, working with resistance bands, or doing body-weight activities like sit-ups.

 

Are Exercise Amount and Intensity Related to Atherosclerosis Risk?

Harlan M. Krumholz, MD, SM, reviewing Aengevaeren VL et al. Circulation 2023 Jan 4

The highest-intensity exercise might hasten atherosclerosis progression, based on results of a small, longitudinal study.

The value of vigorous exercise and the optimal volume of exercise are currently popular topics. In a small Dutch study, MARC-1, healthy, middle-aged, male amateur athletes underwent computed tomography imaging to detect subclinical coronary atherosclerosis. The investigators found that participants with high levels of exercise had more coronary calcium but more-benign composition of plaques. The current follow-up study, MARC-2, assessed the longitudinal relationship between exercise training characteristics and coronary atherosclerosis progression in 289 (92%) of the participants from MARC-1.

During a mean follow-up of 6.3 years, exercise volume (metabolic equivalent of task [MET] hours/week) was not associated with progression in coronary artery calcification (CAC) or plaques. Although vigorous-intensity (6 to <9 MET hours) exercise was associated with slowing CAC progression, very vigorous–intensity (≥9 MET hours) exercise was associated with increasing it. Very vigorous exercise was also associated with elevated odds of calcified plaque progression. Statin use did not modify the results.

It’s never too late to lift weights: Older bodies can still build muscle                      The new study of resistance exercise and the elderly found that even people in their 80s and 90s — who had never lifted weights before — showed significant gains   By Gretchen Reynolds November 29, 2023 at 7:00 a.m. EST  

The new study of resistance exercise and the elderly found that even people in their 80s and 90s — who had never lifted weights before — showed significant gains. (Washington Post Illustration/iStock)

Contrary to popular wisdom among many gym-goers and even some scientists, healthy people in their 60s, 70s and beyond can safely start lifting weights and rapidly build substantial muscle mass, strength and mobility.

Live well every day with tips and guidance on food, fitness and mental health, delivered to your inbox every Thursday.

A new study of resistance exercise and the elderly found that even people in their 80s and 90s — who hadn’t weight trained before — showed significant gains after starting a supervised program of lifting weights three times a week.

“It shows that healthy older people can certainly respond to resistance training, that their muscles are still plastic,” said Tommy Lundberg, an exercise researcher at the Karolinska Institute in Sweden, who was not involved in the study.

Lundberg, the author of the new book, “The Physiology of Resistance Training,” said the research shows it’s never too late for older people to start lifting weights. “They can increase both their muscle size and their strength,” he said.

Most of all, the study implies that our perceptions of what’s physically possible in old age also may need updating.

 

Easy wins, good habits, better living. We’ve got practical tips, smart solutions and helpful guidance for your health, technology, travel, food, money, home and more. Elevate your daily life with expertise from The Washington Post. Find it all here.

End of carousel

Aging muscles can grow

“It is often assumed that the oldest old, or, say, people past the age of 80, are less likely to be able to gain muscle mass and strength,” said Luc van Loon, a professor of human biology at Maastricht University, and senior author of the new study.

This idea took hold partly because the oldest old so rarely were studied. Past weight-training research often capped volunteers’ ages at about 75, because of worries that older people would be unable to handle the training or that their muscles wouldn’t respond if they could manage to lift.

But van Loon and his colleagues were unconvinced. “Muscle tissue is constantly turning over as long as we live,” he said, so why shouldn’t an octogenarian’s muscles strengthen and grow as well as a youngster’s of 65?

To investigate that idea, he and his co-authors recruited 29 healthy, older men and women. The study consisted of two groups. The “younger old” included 17 people between the ages of 65 and 75. Participants in the “older old” group were at least 85. All lived independently and had no debilitating illnesses.

None had regularly weight trained before.

 

 

Growing stronger at any age

The researchers measured everyone’s current strength and muscle mass and then introduced them to weight training, with a basic full-body resistance routine using gym machines such as the lat pulldown and leg extension. The volunteers lifted three times a week for 12 weeks, in supervised sessions, using weights set to as much as 80 percent of their full strength.

This program is more intense than some people might expect older people to tolerate. But the volunteers “loved participating in this intervention,” said Gabriel Nasri Marzuca-Nassr, an associate professor at the University of La Frontera in Chile, who led the new study. Attendance was high, injuries rare.

And both the “younger old” and “older old” groups responded powerfully to the exercise, surprising the researchers somewhat. Before the study started, Marzuca-Nassr said, he and his co-authors had expected the oldest men and women to gain strength and mass, but to a lesser extent than among the 65- to 75-year-olds.

 

However, after three months, the people aged 85 and up had packed on more strength and mass, in relative terms, than the younger group, adding an average of 11 percent to muscle mass and 46 percent to strength, versus 10 percent more muscle and 38 percent more strength among the younger volunteers.

The oldest men and women also improved their scores on a test of their ability to rise from a chair and move around by about 13 percent, versus 8 percent in the younger of the groups.

The oldest group’s greater relative gains were due, in part, the researchers think, to their having had an extra decade of declining muscle size and strength, compared to the younger lifters. They started from a lower baseline.

 

 

Coronary Artery Calcium and Risk of Dementia in the Multi-Ethnic Study of Atherosclerosis

Akira Fujiyoshi, MD, PhD, MPH,1,2

If you maintain good cardiovascualr fitness you will greatly diminish your risk for senile dementia.

Abstract

Background

Studies suggest a link between vascular injuries and dementia. Only a few studies, however, examined a longitudinal relation of subclinical vascular disease with dementia. We tested whether baseline coronary artery calcium (CAC), a biomarker of subclinical vascular disease, is associated with incident dementia independent of vascular risk factors (VRF) and APOE4 genotype in a community-based sample.

Methods and Results

We analyzed 6,293 participants of the Multi-Ethnic Study of Atherosclerosis (MESA), aged 45–84 years at baseline (2000–2002), initially free of cardiovascular disease (CVD) and noticeable cognitive deficit. Dementia cases were identified using hospital and death certificate ICD codes.

Cox models were used to obtain hazard ratios according to CAC category, or per 1 standard deviation (SD) log2[CAC+1], adjusted for VRF, APOE4, with or without exclusion of interim stroke or CVD. We observed 271 dementia cases in a median follow-up of 12.2 years.

Baseline CAC had a graded positive association with dementia risk. Compared to no CAC, CAC score of 1–400, 401–1000, and ≥1001 had increased risk of dementia by 23%, 35%, and 71%, respectively (Ptrend=0.026) after adjustment. 1SD higher log2[CAC+1] was associated with 24% (95%CI: 8–41%, P=0.002) increase in dementia risk.

Although the association was partially explained by interim stroke/CVD, it remained significant even after excluding the interim events, or regardless of baseline age.

Conclusions

Higher baseline CAC was significantly associated with increased risk of dementia independent of VRF, APOE4, and incident stroke. This is consistent with a hypothesis that vascular injuries play a role in development of dementia.

 

 

Vascular risk factors predict cognitive decline and dementia. Coronary artery calcium (CAC) is subclinical vascular disease and can be viewed as marking biological response to cumulative vascular injuries and may predict dementia independently of baseline vascular risk factors. Only a few longitudinal studies, however, reported on dementia and subclinical vascular disease.

Our primary aim is to examine the association of CAC with dementia risk in a community-based sample. We hypothesize that baseline CAC predicts future dementia independently of conventional vascular risk factors and Apolipoprotein E -ε4 genotype (APOE4). We also examine whether the association is attenuated by accounting for interim stroke or cardiovascular disease (CVD) since such clinical vascular manifestations increased future risk of dementia.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5436307/

New guideline recommends CAC scoring when there is uncertainty regarding benefit from statins 

Friday, November 16, 2018   (0 Comments) Posted by: Claire Johns Share| New guideline recommends coronary artery calcium scoring —  a test that costs as little as $75 —  when there is uncertainty regarding benefit from statins   Vienna, VA (Nov. 14, 2018)

 — A key guideline released last week from the American Heart Association (AHA), the American College of Cardiology (ACC) and other groups recommends using a coronary artery calcium (CAC) score for certain at-risk patients to aid in the decision to use statin therapy.

A CAC score is a measurement of the amount of calcium, or hardening, in the walls of the arteries that supply the heart muscle, caused by atherosclerotic disease. It is measured by taking a noninvasive computed tomography (CT) scan of the heart. Numerous studies have indicated that this test, which costs between $75 and $200, is a reliable measure of risk for adverse heart events, such as heart attack and stroke.

The AHA/ACC guideline updates previous recommendations from 2013, and, taking into account this body of research, places increased emphasis on the value of CAC scores for certain groups of patients. These include intermediate-risk and some borderline-risk patients aged 45 to 70 years old with low-density lipoprotein, or LDL cholesterol levels of 70 to 189 mg/dL. A high proportion of LDL cholesterol is associated with a higher risk of heart disease.

A recent  study published in the Journal of the American College of Cardiology shows that CAC scoring can identify, with a high degree of accuracy, patients who will or will not benefit from statin treatment. The study was based on over 13,500 patients followed for nearly 10 years. 

“CAC testing’s true value is via the ‘power of zero,’ and lies in distinguishing who may or may not benefit from pharmacological preventive therapies,” explains Khurram Nasir, MD, FSCCT, of Yale University School of Medicine.

Dr. Nasir also notes “the guidelines also stipulate that apart from CAC testing, all other factors are ‘risk enhancers’ i.e., they upgrade risk but none of them have sufficient power to rule out disease, to meaningfully inform those who are at lower risk.”

The guideline aligns with a 2016 expert consensus statement from the Society of Cardiovascular Computed Tomography, “Clinical indications for coronary artery calcium scoring in asymptomatic patients.

The new cholesterol guideline states: “If CAC is zero, treatment with statin therapy may be withheld or delayed, except in cigarette smokers, those with diabetes mellitus, and those with a strong family history of premature ASCVD. A CAC score of 1 to 99 favors statin therapy, especially in those ≥55 years of age. For any patient, if the CAC score is ≥100 Agatston units or ≥75th percentile, statin therapy is indicated unless otherwise deferred by the outcome of clinician-patient risk discussion.”

Valentin Fuster, MD, PHD, chief of cardiology of the Icahn School of Medicine at Mount Sinai in New York and editor of the Journal of the American College of Cardiology, interprets the new guideline for certain patient groups in this way: “The CAC score is important. If the calcium score is zero, forget about statins. If the score is more than 100, it’s better to take them. But the critical issue is the [doctor’s] discussion with the patient.”

Dr. Fuster’s full “7 Points to Remember” interpretation of the new guideline is available as a video that may be useful to both patients and physicians.

Providers should consider the new AHA/ACC cholesterol clinical practice guideline as well as the Society of Cardiovascular Computed Tomography expert consensus document, along with the overall patient risk profile, in patient shared decision-making.

ext box >>

Exercise Is Medicine: Primary Care Counseling on Aerobic Fitness and Muscle Strengthening

 

Patient counseling on physical fitness remains underutilized in primary care, despite its clinical and cost effectiveness. Most counseling interventions have focused on aerobic activity and neglected another vital component of physical fitness, muscle strengthening, which has recently been shown to be independently protective against cardiometabolic diseases and premature mortality. This article reviews the latest scientific evidence and makes recommendations toward a more comprehensive approach for promoting physical fitness in primary care. Given the high prevalence and wide-ranging health impacts of physical inactivity, counseling on physical fitness should be a standard part of wellness promotion and disease prevention and treatment for all patients. Interventions that include muscle strengthening will have a significantly greater impact on health outcomes than those focused on aerobic fitness alone. Counseling to promote both aerobic fitness and muscle strengthening is indicated for all patients, irrespective of body weight, and should begin early in life and continue across the life course.

In 2007, the "Exercise Is Medicine" initiative was launched by the American College of Sports Medicine and American Medical Association with the goal of making "physical activity assessment and exercise prescription a standard part of the disease prevention and treatment paradigm for all patients."[1] Since then, several large health care organizations have adopted physical activity as a "vital sign" that is routinely assessed and documented in the electronic health record.[2–4] Despite these emerging efforts, patient counseling on physical fitness continues to be underutilized in primary care.[5,6] In US national sample surveys, only 1 in 3 adults report having received counseling on physical fitness or exercise from their physician in the past year, with similar rates among children.[7,8] Certain subgroups, including racial/ethnic minorities and the elderly, are even less likely to receive such counseling.[9] Furthermore, most counseling interventions have focused on aerobic activity[2–4] and neglected another vital component of physical fitness, namely muscle strengthening, which has recently been shown to be independently protective against cardiometabolic diseases and premature death.[10–16] This article reviews the latest scientific evidence and makes recommendations toward a more comprehensive approach for promoting physical fitness in primary care.

 

Prior research indicates that physical inactivity increases cardiovascular disease (CVD) risks and mortality by a similar magnitude as other well-established risk factors, such as smoking and obesity.[17] In addition, physical inactivity is linked with a broad range of other diseases, including diabetes, cancer, musculoskeletal disorders, and depression, affecting nearly every organ system.[17] Its wide-ranging effects are especially important in highly sedentary modern societies like the United States, where physical inactivity is the most common modifiable risk factor for chronic diseases.[18,19] Given the high prevalence and extensive health impacts of physical inactivity, counseling on physical fitness and exercise should be a standard part of wellness promotion and disease prevention and treatment for all primary care patients.

New scientific evidence underscores the importance of muscle strengthening in addition to aerobic (cardiorespiratory) fitness. The earliest uses of physical activity as a vital sign in electronic health records have focused only on aerobic activity.[2–4] However, muscle strength is another essential component of physical fitness that has been shown to have independent long-term effects on disease risks and mortality. Recent large national cohort studies in Sweden demonstrate that in addition to low aerobic fitness, low muscle strength also is a strong risk factor for the development of type 2 diabetes,[10] heart failure,[13]stroke,[14] and premature mortality,[15] independent of aerobic fitness and body mass index (BMI). Table 1 summarizes these findings for CVD-related outcomes and mortality in the largest cohort to date (~1.5 million men).[13] Moreover, aerobic fitness and muscle strength were found to have synergistic effects on these outcomes, that is, their combined effect exceeded the sum or product of their separate effects.[13–15] Men in the highest compared with lowest tertile of muscle strength had a 10% to 20% reduced risk of type 2 diabetes and a 10% to 40% reduced risk of premature death, irrespective of aerobic fitness level.[10,15] These findings suggest that patient counseling interventions that include muscle strengthening will have a significantly greater impact on disease outcomes than those focused on aerobic fitness alone.

 

The benefits of physical fitness counseling extend to people of all body weights and across the life course. Large cohort studies have shown that both high aerobic fitness and high muscle strength are protective against long-term CVD risks and mortality irrespective of body weight or BMI.[10–15] They are beneficial even in persons who have a normal weight, and regardless of weight loss in those who are overweight or obese.[20] These relationships are potentially explained by the preferential effects of aerobic or muscle-strengthening exercise on reducing visceral (intra-abdominal) adiposity, which is highly correlated with inflammatory biomarkers and insulin resistance but has less influence on BMI than subcutaneous fat.[21–24] Both aerobic fitness and muscle strengthening also have beneficial health effects at all ages, from childhood through older adulthood.[10–15,20,25] Individually tailored counseling to promote physical fitness is, therefore, indicated for all patients, even those who are at a normal weight, and should begin early in life and continue across the life course.

 

Patient counseling in the primary care setting is one of the most feasible and effective means of promoting physical fitness in the health care system. Brief (<5 minute) counseling during a primary care visit has been shown to be clinically effective and cost-effective for improving physical activity, analogous to smoking cessation counseling.[26] For example, a meta-analysis of 15 randomized controlled trials with 8745 sedentary adults found that patient counseling in primary care resulted in significantly higher odds of achieving target physical activity levels after 12 months, compared with patients who received usual care (odds ratio, 1.42; 95% confidence interval, 1.17–1.73).[27]Another meta-analysis of 21 randomized controlled trials with 10,519 healthy adults reported that patient counseling in primary care settings was associated with significantly longer duration of physical activity (and a mean increase of >2,000 pedometer steps/day) after 12 months.[28] Other studies have further shown that patient counseling on physical activity improved cardiorespiratory fitness,[29] reduced CVD risks,[30] and did not disrupt or increase the length of clinic visits.[31] Table 2 provides strategies and talking points for integrating physical fitness counseling into primary care visits. Such counseling is both cost- and time-efficient and will likely enhance health outcomes.

In addition to primary care counseling, broader community interventions are also essential for enhancing physical fitness in the general population. Recent population-based findings for both aerobic fitness and muscle strength[10–15]further corroborate existing World Health Organization guidelines for physical activity (shown in Table 2).[32] Interventions to promote these goals are particularly needed in underserved and high-risk subgroups, including racial/ethnic minorities, older adults, and rural populations.[7–9] Given recent federal and state funding cuts, there is a pressing need for more equitable provision of physical education for children and youth in under-resourced schools.[33] Community-based interventions, including walking groups, exercise classes, and health coaching, have been found to significantly enhance physical activity among older adults, particularly when tailored to the local context.[34] The built environment and community walkability are also critical for enhancing physical activity and should be a priority for public policy.[35] Further research will be needed to elucidate what community-based interventions are most effective and how best to tailor them for different population subgroups and communities.

A substantial body of research has underscored a pressing need to promote physical fitness more proactively and consistently throughout the health care system.[5] Physical exercise is an essential first-line treatment for most chronic diseases[4] and plays a key role in reducing health care expenditures.[36]Prescribed interventions should include not only weight control and aerobic fitness but also muscle strengthening, which is independently linked with lower disease risks[10–14] and improved outcomes and longevity.[15,37] Better dissemination of new evidence on the beneficial effects of both aerobic fitness and muscle strength is needed among physicians, patients, the general public, and policymakers. Universal counseling to promote aerobic fitness and muscle strengthening should be a standard part of the wellness paradigm for all primary care patients.

 
 

>

Why Weight Training Beginners Need Personal Trainers

By: Patty Harder

 

 

 

Most weight training programs use a variety of equipment, such as barbells, free weights, and stationary gym machines, to provide a well-rounded routine. Although you may think that establishing a beginning weight training program is easy, going it alone may not be the best solution. In fact, enlisting the help of a certified personal trainer can get your workouts off to a much safer start. 

There are a many advantages to hiring a personal trainer to help you with weight training. Here are just as few:

1. A personal trainer provides you with individualized instruction based on your current fitness level. Your trainer is educated on assessing what your body can and cannot do and will design a workout regimen accordingly. During a workout, your trainer can monitor your progress and add intensity or slow things down a bit if needed. The end result is a workout tailored to your body and fitness goals. 

2. Your progress is monitored on a regular basis. Regular weight training sessions under the watchful eye of your personal trainer is the best way to keep tabs on the effectiveness of your program. If your progress stalls, your trainer can add new, targeted exercises to get off the plateau. Your training will become more specialized as you build strength and stamina. 

3. You're more likely to stick to your workout schedule. Hiring a personal trainer involves a financial commitment that helps you stay on track. If you've pre-paid for 10 training sessions, for example, you have strong motivation to show up for your workout. 

4. Your weight training workouts will be safe. Let's face it, lifting weights and pushing your body to become stronger can be dangerous. With a personal trainer watching your moves, you're less likely to incur injuries from bad form or incorrect movements. 

5. You'll have a motivational model to admire. Most personal trainers are fit, which makes them good role models as you work toward your fitness goals. Try to select a trainer that has a body shape you admire and talk to her about how she achieved it. There is much to be learned from someone who has 'been there, done that' and has achieved a high level of fitness. 

6. You'll get access to insider tips and hidden tricks of the trade. Your personal trainer should have a wealth of ideas for getting you fast results with the least amount of effort. And if one exercise doesn't work, she'll have another one up her sleeve! Follow your trainer's lead and learn from her experience. Before you know it, you'll have the hard body of your dreams. 

7. You're more likely to get positive results. Your personal trainer is getting paid to transform your body and is highly-motivated to help. (After all, if you get great results, you're likely to sign up for more training sessions!) You've hired this person to help you achieve your fitness goals. Use this to your advantage by following your trainer's instructions before, during, and after your workouts.

Beginning weight training requires motivation and commitment. The process of transforming your body from flab to fit won't happen overnight - or even next week. But having the support and motivation of a personal trainer is the best way to achieve your dream body quickly and safely.

<< New text box >>

AHA Statement on Promotion of Physical Activity Circulation; 

Circulation; ePub 2018 Apr 4; Lobelo, et al April 17, 2018

 

In an effort to decrease the epidemic of physical inactivity and to reduce the risk factors for non-communicable chronic diseases (NCDs), clinicians must routinely assess and promote physical activity in adult patients. This according to a new scientific statement from the American Heart Association (AHA) that provides recommendations for healthcare systems, clinical and community care providers, fitness professionals, the technology industry, and other stakeholders in order to catalyze increased adoption of physical activity assessment and promotion in healthcare settings and to contribute to meeting the AHA’s 2020 Impact Goals. Among the statement’s highlights and recommendations:

  • Make physical activity assessment a priority in all visits, particularly when the focus is cardiovascular disease (CVD) evaluation and management or preventive care.
  • Methods to capture physical activity information can include electronic medical records (captured via self-reports or via wearable devices).
  • As recommended by the physical activity guidelines for Americans, a comprehensive assessment of physical activity should include engaging in muscle-strengthening, resistance, and flexibility exercises for major muscle groups at least twice a week.
  • Identify behavioral readiness with the transtheoretical model of behavior change to help tailor the physical activity counseling.
  • To make physical activity promotion efforts more credible and motivating, physicians should ensure that they “walk the talk” themselves.

 

No-Excuse Workouts for Busy Doctors

BY JONATHAN FORD HUGHES ON NOVEMBER 8, 2018

Thanksgiving marks the official start of the holiday season. It also usually marks the beginning of the annual expansion of your waistline.

Sure, you’re quick to tell your patients that they need to lose weight, but what’s your BMI looking like heading into holiday carb-binge number one? Across the pond, where they don’t have Thanksgiving, a 2008 study published in the British Journal of Sports Medicine found that four out of five British doctors don’t get enough exercise.

It’s easy to see why this might be the case for you. Your time is precious, and it’s currently being sucked up by EMRs, studying for certification exams and the struggle to keep up with increasing patient volume. But the truth is, none of that matters if you become the person in the hospital bed.

So, what’s a busy doctor to do? You need to be smarter about how you work out. There are other fitness options besides hours of cardio. You don’t even need a gym. If you work in a hospital, you have access to a shower. That means you can get one of these quick workouts in and clean up in an hour or less. Here are some effective options for time-strapped physicians.

High intensity interval training (HIIT)

Cardio is for people with lots of time and self-loathing. HIIT is for time-strapped people who actually want fast weight loss and strength gains. It’s also perfect for busy doctors because you can do it anytime anywhere with no equipment. If you have 15 minutes, you can do a HIIT workout.

HIIT workouts include intervals of high-effort work, followed by typically shorter intervals of rest. The alternating effect forces your muscles and cardiovascular system to work harder than they would with cardio alone. Download the free Interval Timer app, warm up a bit, and give this beginner-friendly workout a try.

Set your app for 15-20 minutes of 30-second work and 30-second rest intervals. Then cycle through this list of bodyweight exercises, pushing yourself as hard as you can for an interval, then recovering for an interval. Links will take you to examples of each move, if you don’t know how to do them.

You can find excellent, free HIIT workouts for all skill levels on FitnessBlender. (No affiliation, just great beginner-friendly workouts.)

Modifying HIIT workouts

You can play with the HIIT structure, incorporating weights, cardio equipment or different movements as you see fit. If you’re someone who gets bored easily, changing the movements or incorporating fitness equipment are great ways to keep things interesting. Here are a few options.

  • As Many Rounds as Possible (AMRAP): Instead of selecting a time interval for each movement, pick a number of repetitions. Anywhere in the range of eight to 10 repetitions is a good place to start. Complete the repetitions and move on to the next exercise, keeping track of how many times you complete the cycle. Try and beat the total next time.
  • Incorporate weights: Weights, particularly kettlebells, are very HIIT-friendly. Kettlebells are portable, relatively inexpensive and force you to work your core, building strength and endurance. They’re also a great way to injure yourself, if you perform movements incorrectly. Consult with a personal trainer before starting any kettlebell work.
  • Use cardio equipment: If you’re the kind of person who enjoys running and not actually getting anywhere, you can perform HIIT workouts on treadmills (running, then walking) or any other cardio device, including stair climbers, ellipticals and rowers. Just don’t set the machine speed too high and fall off. Jumping rope is another great, highly portable and affordable option.

TL;DR

Fight holiday weight gain using High Intensity Interval Training (HIIT). You’ll burn more calories in shorter periods of time, making HIIT a perfect option for busy doctors. These workouts can be done anywhere and require no equipment. So get busy.

Resistance Exercise Linked to Reduced Anxiety

September 25, 2017

 

People who do resistance exercises like weight lifting may experience less anxiety than people who don’t work out, a research review suggests.

Researchers analzed ata from 16 previously published studies with a total of 922 participants who were randomly assigned to do resistance training or be inactive. The study was published in Sports Medicine, online August 17.

Resistance workouts were associated with a reduction in anxiety symptoms whether or not participants had a mental health disorder, though the effect was more pronounced in healthy people who didn’t report any physical or psychological problems.

“The positive effects of exercise training on mental health are well established; however, the majority of this knowledge is based on studies involving aerobic-based training,” said lead study author Brett Gordon, a physical education and sports researcher at the University of Limerick in Ireland.

“RET (resistance exercise training) significantly reduced anxiety in both healthy participants and those with a physical or mental illness, and the effect size of these reductions is comparable to that of frontline treatments such as medication and psychotherapy,” Gordon said by email. “RET is a low-cost behavior with minimal risk, and can be an effective tool to reduce anxiety for healthy and ill alike.”

Because the analysis only focused on resistance training, the results can’t show whether this type of activity might be better or worse than aerobic or other types of exercise for easing anxiety symptoms.

While the effects of resistance exercise on the brain are not as well understood as the impact of aerobic workouts, emerging research has also linked resistance training to less shrinkage of white matter in the brain, said Dianna Purvis Jaffin of the Brain Performance Institute at the University of Texas at Dallas.

White matter is composed of nerve fibers that connect neurons in different parts of the brain. Changes in white matter can occur with age, and are thought to be involved in cognitive and behavioral problems.

It’s possible that exercise might help ease anxiety simply by distracting people from how they’re feeling and giving them something else to focus on, Jaffin, who wasn’t involved in the current study, said by email.

“Exercise generally requires some level of concentration on the activity and may serve as a distraction, and at least acutely (meaning - during that bout of exercise and a bit after) interrupt rumination and obsessive worrying,” Jaffin said.

“Finally, since people with anxiety tend to have uncertainty about their future, they may obsessively worry and lack confidence,” Jaffin added. “Exercise can improve self-efficacy, the belief that one can succeed in particular situations, which may make someone feel more empowered.”

While the amount of exercise may influence the impact of workouts on mental health, there isn’t enough evidence available yet to prescribe a specific amount of activity, said Steven Petruzzello, a body mechanics researcher at the University of Illinois Urbana-Champaign who wasn’t involved in the study.

Absent this sort of prescription, choosing an enjoyable workout makes sense, Petruzzello said by email.

In the current analysis, people did resistance exercises on two to five days per week for an average of 11 weeks.

“The best advice at the present time is to ‘just do it’ - it being whatever the person finds enjoyable or at least tolerable,” Petruzzello said. “For some that might mean going for a walk, for others it might entail more vigorous forms of activity.”

SOURCE: http://bit.ly/2yvBptq

Sports Med 2017.

(c) Copyright Thomson Reuters 2017.

<< New text box >>

Updated Exercise Guidelines for Adults With Arthritis

Pam Harrison

July 19, 2018

  • Counseling patients with inflammatory arthritis (iA) or osteoarthritis (OA) of the hip or knee about the benefits of physical activity (PA) should be standard of care in clinical practice, new recommendations from the European League Against Rheumatism (EULAR) indicate. The authors emphasize that public health recommendations for PA apply as much to those with arthritic diseases as they do for the general public.

"[P]eople with iA and OA may be reluctant towards engaging in PA, fearing flare-up or joint damage by exercising," Anne-Kathrin Rausch Osthoff, MSc, from the Institute of Physiotherapy at Zurich University of Applied Sciences in Winterthur, Switzerland, and colleagues write. "Given the evidence for its effectiveness, feasibility and safety, PA is advocated as [an] integral part of standard care throughout the course of these diseases.... It is advised that these recommendations should be implemented considering individual needs and national health systems."

The recommendations were published online July 11 in the Annals of the Rheumatic Diseases.

The 2018 EULAR Task Force based their recommendations on a quantitative analysis of data from 11 studies. Task force members considered patients with rheumatoid arthritis (RA) and spondyloarthritis (SpA), as well as OA involving either the hip or knee.

 

Overall, the task force members found that cardiovascular exercises "have a moderate beneficial effect on cardiovascular fitness (evaluated in VO2 max) in all three conditions," they write.

Similarly, the analysis showed a moderate benefit from strength training exercises in RA and OA. In contrast, the combination or aerobic exercise plus strength training, along with exercises to improve flexibility, were not found to be beneficial in patients with either SpA or OA.

The authors also point out that standard public health recommendations for PA are safe. "No detrimental effects were reported, rather beneficial effects on disease activity and symptoms in iA," they state. Public health recommendations for PA from the American College of Sports Medicine and the American Heart Association include the following:

  • Adults 18 to 65 years of age should engage in either moderate-intensity aerobic PA for a minimum of 30 minutes 5 days a week or vigorous-intensity aerobic activity for a minimum of either 20 minutes on 3 days a week or a combination of both.

  • This amount of moderate-intensity aerobic activity can be accumulated by doing bouts of exercise lasting at least 10 minutes each to reach the recommended total of 30 minutes a day.

  • Adults need to engage in any activity that maintains or increases muscle strength and endurance on at least 2 days a week.

  • Anyone who wants to improve their level of fitness, reduce the risk for chronic disease and disabilities, or prevent unhealthy weight gain may exceed the minimum recommended PA levels.

Increase Promotion, Task Force Emphasizes

Task force members also emphasize that all healthcare professionals need to increase their promotion of PA for patients with iA and OA and, if necessary, collaborate with different professions to better meet these goals.

Weight Training May Help to Ease or Prevent Depression

Benefits essentially were the same whether people went to the gym twice a week or five times a week.

By Gretchen Reynolds

  • June 6, 2018

Lifting weights might also lift moods, according to an important new review of dozens of studies about strength training and depression. It finds that resistance exercise often substantially reduces people’s gloom, no matter how melancholy they feel at first, or how often — or seldom — they actually get to the gym and lift.

There already is considerable evidence that exercise, in general, can help to both stave off and treat depression. A large-scale 2016 review that involved more than a million people, for instance, concluded that being physically fit substantially reduces the risk that someone will develop clinical depression. Other studies and reviews have found that exercise also can reduce symptoms of depression in people who have been given diagnoses of the condition.

But most of these past studies and reviews have focused on aerobic exercise, such as walking or jogging.

Far less has been known about the possible benefits, if any, of strength training for mental health. One 2017 analysis of past research had found that strength training can help people feel less anxious and nervous.

But anxiety is not depression.

So for the new study, which was published in May in JAMA Psychiatry, the same researchers who earlier had examined anxiety and resistance exercise now turned their attention to depression.

They wanted to see whether the available research could tell us if lifting weights meaningfully affects the onset and severity of depression. They also sought to determine if the amount of the exercise and the age, health or gender of the exercisers would matter.

The researchers began by gathering all of the best past studies related to resistance exercise and depression. They were interested only in randomized experiments with a control group, meaning that some people had been assigned to start exercising while others had not. These experiments are the gold standard for testing the effects of exercise and other interventions.

The experiments also had to include testing for depression before and after the training.

The researchers ultimately found 33 experiments of weight training and depression that met their criteria. The studies involved almost 2,000 men and women of various ages, some of whom had been diagnosed with depression, while others had not.

The researchers aggregated the results from all of these studies and then began digging through the data.

 

 

What they found was that resistance training consistently reduced the symptoms of depression, whether someone was formally depressed at the start of the study or not. In other words, if people began the study with depression, they usually felt better after taking up weight training. And if they started out with normal mental health, they ended the experiment with less chance of having become morose and sad than people who did not train.

 

Perhaps most interesting, the amount of weight training did not seem to matter. The benefits essentially were the same, whether people went to the gym twice a week or five times a week and whether they were completing lots of repetitions of each exercise or only a few.

The mental health impacts were similar, too, for men and women and for younger lifters (often college students) and people who were middle-aged or elderly.

And people did not need to pack on mass or might to reduce their depression. More strength after the experiment did not correlate with less depression, the researchers found.

All that mattered was showing up and completing the workouts.

 

Only a few of the studies had also included a separate group who tried aerobic exercise, making it difficult to compare the effects of that kind of workout with those of lifting weights.

But while the number of people involved was small, the combined results suggest that weight training and aerobic exercise have similar impacts on depression, the authors of the new review conclude.

Both types of exercise reduced symptoms, and to about the same extent.

 

 

 

This kind of review cannot tell us, though, how strength training might be influencing mental health.

 

The exercise probably has both physiological and psychological consequences, says Brett Gordon, a graduate student at the University of Limerick in Ireland, who led the new review. The weight training could be changing aspects of the brain, including the levels of various neurochemicals that influence moods, he says.

“Expectancy could also be at work,” he says. People expect the workouts to make them feel more cheerful, and they do. (It’s impossible to blind people about whether they are lifting weights or not, he points out. So some of the psychological benefits might be the result of a biological placebo effect, which nonetheless produces real benefits.)

The review’s results do not indicate that resistance training is better for combating depression than other kinds of exercise, Mr. Gordon says. Nor do the results suggest that exercise can, or should, replace traditional therapies, including medication.

But as a whole, he says, the data do suggest that visiting the gym and lifting weights a few times a week might be an effective way to buoy mental health.

Big Muscles Make You Smarter

Rae Johnston

Oct 25, 2016, 8:30am

This might finally be what motivates me to work out.

New results from a recent trial led by the University of Sydney has revealed increased muscle strength leads to improved brain function.

With 135 million people forecast to suffer from dementia in 2050, the study's findings have implications for the type and intensity of exercise that is recommended for our growing ageing population. Mild Cognitive Impairment defines people who have noticeably reduced cognitive abilities such as reduced memory but are still able to live independently, and is a precursor to Alzheimer's disease.

Findings from the Study of Mental and Resistance Training (SMART) trial show, for the first time, a positive causal link between muscle adaptations to progressive resistance training and the functioning of the brain among those over 55 with MCI. The trial was conducted in collaboration with the Centre for Healthy Brain Ageing at University of New South Wales and the University of Adelaide.

"What we found in this follow up study is that the improvement in cognition function was related to their muscle strength gains" said lead author Dr Yorgi Mavros, from the Faculty of Health Sciences, at University of Sydney. "The stronger people became, the greater the benefit for their brain."

SMART was a randomised, double-blind trial involving 100 community-dwelling adults with MCI, aged between 55 and 86. They were divided into four groups doing either resistance exercise and computerised cognitive training, resistance exercise and a placebo computerised training (watching nature videos), brain training and a placebo exercise program (seated stretching/calisthenics) or placebo physical exercise and placebo cognitive training.

Participants doing resistance exercise prescribed weight lifting sessions twice week for six months, working to at least 80 per cent of their peak strength. As they got stronger, the amount of weight they lifted on each machine was increased to maintain the intensity at 80 per cent of their peak strength.

Global cognition for this group improved significantly after the resistance training, as measured by tests including the Alzheimer's disease Assessment Scale/Cognitive scale. The cognitive training and placebo activities did not have this benefit. The benefits persisted even 12 months after the supervised exercise sessions ended.

"The more we can get people doing resistance training like weight lifting, the more likely we are to have a healthier ageing population," said Dr Mavros. "The key however is to make sure you are doing it frequently, at least twice a week, and at a high intensity so that you are maximising your strength gains. This will give you the maximum benefit for your brain."

These new findings reinforce research from the SMART trial published earlier this year, where MRI scans showed an increase in the size of specific areas of the brain among those who took part in the weight training program. These brain changes were linked to the cognitive improvements after weight lifting.

"The next step now is to determine if the increases in muscle strength are also related to increases in brain size that we saw," said Professor Maria Fiatarone Singh, geriatrician at University of Sydney. "In addition, we want to find the underlying messenger that links muscle strength, brain growth, and cognitive performance, and determine the optimal way to prescribe exercise to maximise these effects."

Top 10 Personal Trainer Tips for Fat Loss 

1. The key to fat loss is high-intensity training with little rest between exercises.

 

2. Using circuits of several exercises done in back-to-back fashion  is a very effective method for fat loss. Alternating these exercises between upper body and lower body is even

 

3. The more you work your large muscle groups, the more calories you will burn.

 

4. Use compound lifts such as squats, military press or bench press, pull ups or lat pull downs, dear lifts, kettle bell swings, step ups, rows, and lunges.

 

5. Use relatively high rep sets(10-20 reps)

 

6. Metabolic training should be done as frequently as possible preferably at least 3 x per week, but may be done every day.

 

7. Resistance training will allow an untrained individual to gain muscle mass while losing fat which will increase the rate at which the percent body fat drops and the body composition improves.

 

8. Using relatively heavy weights will preserve muscle mass in an overweight person who has previously trained with heavy weight.

 

9. A relatively high protein, low fat, low simple carbohydrate diet including fruits and vegetables and lean meats and fish and seafood and small portions of legumes is the key to the success of the program.

 

 

10. In order to be successful, you must be in a negative calorie balance.

 


 

 

 

Exercise Boosts Brain Size, Reduces Dementia Risk

August 5, 2016

Researchers using the Framingham Heart Study have found a link between less physical activity and greater risk of developing dementia.

While multiple longitudinal studies have determined an inverse relationship between physical activity levels and cognitive decline, dementia, and/or Alzheimer disease (AD), results have been inconsistent, according to a team of investigators who followed cases of patients in an older, community-based cohort for more than a decade in an effort to examine the connection between physical activity and the risk of incident dementia and subclinical brain magnetic resonance imaging markers of dementia. 
 

To do so, the authors assessed the physical activity index (PAI) in the Framingham Study Original and Offspring cohorts, aged 60 years or older, evaluating the association between PAI and risk of incident all-cause dementia and AD in participants of both cohorts who were cognitively intact and had available PAI. Overall, the researchers studied 3714 individuals and also examined the association between PAI and brain magnetic resonance imaging in the Offspring cohort.

Over a decade of follow-up, 236 participants developed dementia, of whom 188 developed AD. Participants in the lowest quintile of PAI had an increased risk of incident dementia compared with those in higher quintiles in a multivariable-adjusted model. Secondary analysis revealed that this relationship was limited to participants who were apolipoprotein E ε4 allele noncarriers and was strongest in participants aged 75 years or older. PAI was also linearly related to total brain and hippocampal volumes.

These results "add to the evidence base that regular physical activity can reduce one's risk for AD and other forms of dementia and fights against the age-related reduction in brain size," said lead study author Zaldy S. Tan, MD, MPH, medical director of the Alzheimer's and Dementia Care Program at the University of California Los Angeles (UCLA).

The findings "are very encouraging, in that even moderate physical activity [reaps] beneficial effects, especially in people over the age of 75," said Dr Tan, who is also an associate professor at UCLA's David Geffen School of Medicine. "This means that one is never too old to gain brain health benefits from exercise."

Even "a little activity appears to be better than nothing," added Nicole L. Spartano, PhD, a postdoctoral fellow at Boston University School of Medicine in Massachusetts and a coauthor of the study.

"Our data also suggests that the activity might not have to be very strenuous, which may be a good message to hear for older adults with mobility issues or worries about their safety in strenuous exercise," Dr Spartano said. "This study suggests that it is the total picture of improving the healthy lifestyle, which may involve getting out and gardening, going for a walk around the block with a neighbor, or [doing] light exercises in the home."

—Mark McGraw

Reference

Tan ZS, Spartano NL, Beiser AS et al. Physical activity, brain volume, and dementia risk: the Framingham Study [published online July 15, 2016]. J Gerontol A Biol Sci Med 

Brains of overweight people ‘ten years older’ than lean counterparts at                 middle-age        

 

August 8, 2016

University of Cambridge

From middle–age, the brains of obese individuals display differences in white matter similar to those in lean individuals ten years their senior, according to new research led by the University of Cambridge. White matter is the tissue that connects areas of the brain and allows for information to be communicated between regions.
Our brains naturally shrink with age, but scientists are increasingly recognizing that obesity – already linked to conditions such as diabetes, cancer and heart disease – may also affect the onset and progression of brain aging; however, direct studies to support this link are lacking. In a cross–sectional study – in other words, a study that looks at data from individuals at one point in time – researchers looked at the impact of obesity on brain structure across the adult lifespan to investigate whether obesity was associated with brain changes characteristic of aging. The team studied data from 473 individuals between the ages of 20 and 87, recruited by the Cambridge Centre for Aging and Neuroscience. The results were published in the journal Neurobiology of Aging. The researchers divided the data into two categories based on weight: lean and overweight. They found striking differences in the volume of white matter in the brains of overweight individuals compared with those of their leaner counterparts. Overweight individuals had a widespread reduction in white matter compared to lean people. The team then calculated how white matter volume related to age across the two groups. They discovered that an overweight person at, say, 50 years old had a comparable white matter volume to a lean person aged 60 years, implying a difference in brain age of 10 years. Strikingly, however, the researchers only observed these differences from middle–age onwards, suggesting that our brains may be particularly vulnerable during this period of aging.

CIRCUIT TRAINING

By Kara Mayer Robinson April 13, 2016

Changes by Eric Greenberg MD CPT in RED

 

How It Works

You won't be bored when you do circuit training. This workout gets your heart rate up and strengthens your muscles at the same time. 

 

This is the most time efficient workout and is great for personal training sessions.  It will make you leaner and stronger and give you the appearance of being more toned or cut.

 

You’ll move quickly through 5-10 exercise stations to work different muscle groups with little to no rest between stations. Each station has a different exercise.

 

Exercises will work your upper body and arms, legs, thighs,and glutes and the rest of your core muscles. The workout will improve you aerobic and anaerobic capacity and is a great cardiovascular workout.

 

You’ll do about 8-25 reps at each station, lasting between 30 seconds and 3 minutes, and then move on to the next station.

To keep things interesting, you can switch up the sequence, swap out different stations, and do it at the gym with equipment, at home with dumbbells and resistance bands, or on a fitness trail by alternating push-ups and squats with brisk walking or biking.

Allow at least 20-30 minutes for the workout. If you're new to the moves, work with a trainer or take a class so you learn how to do each exercise right.

Intensity Level: Medium

Push yourself as hard as you want. If you want to make it more challenging, switch from station to station faster or boost the intensity. Or you can work out at a more comfortable pace.

Areas It Targets

Core: Yes. Any station that engages your core, whether it’s a squat or a standing military press, a machine like the standing low cable hip abduction or an exercise like a front plank, can help you strengthen your core.

Arms: Yes. Nearly every upper body exercise engages the arms.

Legs: Yes. Your legs will get a workout from gym machines like the seated leg press. For an extra boost, include intervals of squats or lunges in your circuit.

Glutes: Yes. Slip in any exercise that fires your glutes. At home or on a fitness trail, a station of lunges will do the trick. If you’re at the gym, opt for a machine like the lying hamstring curl machine.

Back: Yes. Use gym equipment like the seated machine row. At-home or on-trail moves like the front plank or pull-ups also target your back.

Type

Flexibility: Yes. Using proper technique as you work through your circuit will improve your flexibility.

Aerobic: Yes. Moving quickly through exercises makes this a good cardiovascular workout. If you include cardio stations like jumping rope, going up or down stairs, orjogging in place, you’ll get an added cardio boost.

Strength: Yes. Any station that involves strength training, like push-ups, dumbbells, or strength training machines, will make you stronger.

Sport: No, but if you're an athlete, circuit training is a great tool to improve your sports performance.

Low-Impact: Yes. You can choose low-impact exercises only.

What Else Should I Know?

Cost: It can be free if you use exercises that use your own body weight, like push-ups, planks, and lunges, or if you use equipment along a walking trail or a parcourse. If you do your circuits at the gym, you’ll pay gym membership fees.

Good for beginners? Yes. You can create your own circuit that’s right for you, even if you’re just starting out.

Outdoors: Yes. Try it on a fitness trail or your own backyard.

At home: Yes. Create stations out of exercises that use your own body weight, or use resistance bands, dumbbells, or kettlebells. Or try a DVD to guide you through a circuit-training workout.

Equipment required? No. You can choose exercises that use your own body weight. Or you can buy at-home equipment like dumbbells and resistance bands. If you belong to a gym, you can use the gym’s fitness machines.

What Dr. Michael Smith Says:

If you’re looking for a full-body workout in 30 minutes or less, circuit training does the trick. You get the benefits of muscle building and toning along with an intense cardio workout.

If you get bored trotting along on a treadmill or elliptical, circuit training can fix that, too. The exercises options are endless. Switch up the exercises frequently to tame the exercise doldrums and keep improving your body.

Work at your own pace. Start with a trainer one-on-one or in a small group setting to make sure you’re doing the exercises correctly and working within your limits.

Is It Good for Me If I Have a Health Condition?

Circuit training is an excellent option to help you lose weight along with a healthy diet. So if you need to lose weight because you have a condition like diabeteshigh blood pressure, or high cholesterol, this may be a good choice for you.

It's intense, so check with your doctor first. You might be better off starting with something easier, especially if you have any heart problems.

If you have diabetes, make sure you know what to do if your blood sugar goes too low when exercising.

If you have arthritis, choose low-impact exercises. Don't do any moves that put pounding pressure on painful joints, like jumping jacks.

If you have a knee or back injury, circuit training isn’t for you. Once you’re recovered, it could be option. Ask your doctor if you're ready for it. You may want to work with a physical therapist or certified trainer who can help you get the benefits while minimizing the risk of reinjury. If you're taking a class, let your instructor know about your injuries.

If you have other physical limitations, you can likely find something that works for you. An instructor or trainer can work with you to find moves that will still get your heart pumping and tone your muscles.

If you're pregnant and you did circuit training before getting pregnant, you can keep doing it if your doctor says it's OK. Drink water while you exercise, and don't do any exercises that could make you fall or get overheated.

Walk, Jog or Dance: It’s All Good for the Aging Brain

By GRETCHEN REYNOLDS

APRIL 7, 2016

More people are living longer these days, but the good news comes shadowed by the possible increase in cases of age-related mental decline. By some estimates, the global incidence of dementia will more than triple in the next 35 years. That grim prospect is what makes a study published in March in The Journal of Alzheimer’s Disease so encouraging: It turns out that regular walking, cycling, swimming, dancing and even gardening may substantially reduce the risk of Alzheimer’s.

Exercise has long been linked to better mental capacity in older people. Little research, however, has tracked individuals over years, while also including actual brain scans. So for the new study, researchers at the University of California, Los Angeles, and other institutions analyzed data produced by the Cardiovascular Health Study, begun in 1989, which has evaluated almost 6,000 older men and women. The subjects complete medical and cognitive tests, fill out questionnaires about their lives and physical activities and receive M.R.I. scans of their brains. Looking at 10 years of data from nearly 900 participants who were at least 65 upon entering the study, the researchers first determined who was cognitively impaired, based on their cognitive assessments. Next they estimated the number of calories burned through weekly exercise, based on the participants’ questionnaires.

The scans showed that the top quartile of active individuals proved to have substantially more gray matter, compared with their peers, in those parts of the brain related to memory and higher-­level thinking. More gray matter, which consists mostly of neurons, is generally equated with greater brain health. At the same time, those whose physical activity increased over a five-year period — though these cases were few — showed notable increases in gray-matter volume in those same parts of their brains. And, perhaps most meaningful, people who had more gray matter correlated with physical activity also had 50 percent less risk five years later of having experienced memory decline or of having developed Alzheimer’s.

“For the purposes of brain health, it looks like it’s a very good idea to stay as physically active as possible,” says Cyrus Raji, a senior radiology resident at U.C.L.A., who led the study. He points out that “physical activity” is an elastic term in this study: It includes walking, jogging and moderate cycling as well as gardening, ballroom dancing and other calorie-burning recreational pursuits. Dr. Raji said he hopes that further research might show whether this caloric expenditure is remodeling the brain, perhaps by reducing inflammation or vascular diseases.

The ideal amount and type of activity for staving off memory loss is unknown, he says, although even the most avid exercisers in this group were generally cycling or dancing only a few times a week. Still, the takeaway is that physical activity might change aging’s arc. “If we want to live a long time but also keep our memories, our basic selves, intact, keep moving,” Dr. Raji says.

 

Trainers Who Want to Be Just What the Doctor Ordered New York Times  September 21, 2006 

<

FITNESS clients can make unreliable sources. They may tell their personal trainer about their recurring back pain, but neglect to mention their hypertension medication. They may disclose on a health questionnaire that they are diabetic, but not disclose a bad ankle sprain. They may feel embarrassed to share that they had a pectoral muscle removed to treat breast cancer.

Conscientious trainers say they would love to have a better relationship with their clients’ doctors, mostly to make sure that while working their cardiovascular systems and muscles they will do no harm. But breaking down the wall between the gym and the consulting room has been difficult, say trainers who have tried.

“I’ve been rejected or blown off or gotten the ‘Give me your card’ kind of thing,” said Derek Dodd, a certified trainer and a registered nurse in West Palm Beach, Fla., referring to his contacts with some doctors.

Some doctors are reluctant to form an alliance with trainers, since it’s hard to know whom to trust, when far too many have certifications that are questionable, at best.

But some personal trainers not only have more demanding certifications, but also academic degrees in relevant fields. And unlike those who push “no pain, no gain,” they say they are concerned not only with how many pull-ups their clients can do, but also with how their medications and old injuries may affect their workouts.

And many of them contend that now, more than ever, doctors need to start thinking about them as part of their patients’ health care. For one, Americans over 55 are the fastest growing segment of gym members, according to American Sports Data, a market research firm.

“We are seeing more people coming to gyms with hypertension, diabetes and old musculoskeletal injuries,” said Michael Jones, the founder of the American Academy of Health, Fitness and Rehabilitation Professionals, an educational organization in Sacramento. “They need good exercise programs that are developed in conjunction with fitness and medical professionals to avoid injuries and improve function.”

In addition, many health insurers are limiting the number of physical therapy visits a patient can make, and trainers are inheriting more half-mended patients.

“The insurance company is looking for roughly 75 to 80 percent overall improvement, at which point the insurance company stops authorizing visits,” said Dr. Craig Antell, who practices physical medicine in Manhattan. “You’re left with a patient who is 80 percent better, still needing work. That’s where personal trainers come in.”

Dr. Antell, the medical director at Madison Avenue Physical Rehabilitation and Wellness, is one doctor who understands the importance of a good relationship with personal trainers. He estimated that last year his practice referred about 50 patients to trainers, up from a dozen five years ago.

He said he does not make such referrals indiscriminately: All 10 trainers he works with have bachelor’s or master’s degrees in exercise science or a relevant field. And to ensure that the trainer is in tune with a patient’s needs, he requires the first trainer-patient session to occur at his office so he can supervise. “If I get a trainer that hurts someone, I’ve got a world of trouble,” Dr. Antell said.

He said he also requests monthly updates on patients from trainers, so he is alerted if one has a setback.

The most diligent trainers can be useful to doctors because they can be a first-alert system for developing problems. Jan Griscom, a personal trainer for 25 years who works at the Chelsea Piers sports center in Manhattan, recalled one client who had extreme back pain when he did abdominal crunches.

An internist at first detected nothing, said Ms. Griscom, who said her goal is to “create a team between the person, their body, their doctor and me.” But when his pain persisted, Ms. Griscom urged him to go back, realizing that the degree of his suffering was not normal. She said his internist found an abdominal aneurysm, a potentially life-threatening condition.

In another case, she said, a young woman who was months away from marrying kept complaining of dizziness and nausea, even when she wasn’t exerting herself that hard. Ms. Griscom, who has a master’s in biomechanics, advised her to seek medical help, and after blood work, she was found to have diabetes.

Some trainers are afraid to send their clients to a doctor, fearing they will lose their business.

Others — the more dangerous kind — take it on themselves to diagnose their clients’ injuries. That problem is so pervasive that one type of continuing-education certification available to trainers — medical exercise specialist — teaches them to assess when a potential client’s needs are beyond their expertise. Nearly 8,000 people worldwide have been certified by the academy of fitness and rehabilitation professionals, up from 37 in 1994.

But once an injured client has been treated by a medical professional, there is often a role for the trainer, especially for certain kinds of back and neck problems.

“There’s some underlying weakness or predisposition to being injured like that again,” said Graham Melstrand, the vice president for operations at the American Council on Exercise, known as ACE, which certifies trainers. If a physician or a physical therapist creates a strengthening program with a trainer that addresses the root of the problem, then maybe the patient will not be hurt again, he added.

Anthony Carey, the owner of Function First, a studio in San Diego, feels so strongly about the importance of a holistic approach to his clients’ training that he has developed an organized way to reach out to doctors. For clients who give him permission, he sends letters to their doctors requesting crucial health information. Enclosed is a glossy brochure that describes his methods as an exercise physiologist, with a prescription form that the doctor can fill in.

“The bottom line is, we want to know any contraindications and any things we should be aware of that could potentially put this client at risk,” Mr. Carey said. He also mails doctors details of his recommended exercise regimen.

Yet of the 75 or so doctors he contacts every year, only a handful get back to him. Those who respond receive progress reports on their patients, about every two weeks in some cases, and about every month or two in others. If something is worrisome, Mr. Carey said, he’ll pick up the phone.

Working as a team benefits everyone, Mr. Carey said.

“We have input directly from the doctor, without it being lost in translation with the patient,” he said. “The patient feels much more taken care of, because we’ve all made an effort. The doctor is at ease with the exercise program the person is undertaking.”

Some doctors are starting to recognize these benefits — as long as the trainer is, like Mr. Carey, reputable and qualified. Confidentiality is an issue, too; patients must sign waivers to allow their doctors to share their private medical profiles with anyone else.

Dr. Bradford Stiles, a primary-care doctor who specializes in sports medicine in San Diego, and who works with Mr. Carey, said he welcomes frequent updates on his patients. “If the trainer or physical therapist is not seeing improvement, and they alert me, we get them back sooner to do more testing,” Dr. Stiles said. “That line of communication is very important.”

One growing trend is medically integrated training centers, with a physician on site to supervise trainers. In 2005, 855 hospitals in the United States owned medical fitness centers, where doctors and well-educated trainers create exercise regimens together, up from 715 in 2004, according to the Medical Fitness Association, a trade group.

“It’s the best of both worlds,” said Zoe Guirlinger, an owner of a fitness center called Ultimate U Total Health near Columbus, Ohio, which has a doctor, physical therapists, personal trainers and dietitians in house.

But patients must also play a role. And many are not doing enough to protect their own health, trainers and doctors said.

Kathy Ekdahl, a personal trainer in the Boston area, who receives referrals from four physicians, said that a few weeks ago she got a call from a woman with osteoporosis. The caller was referred to her for strength training two years ago, but she had waited until now to act.

“Humans are pathetic,” Ms. Ekdahl said. “We wait until the absolute last moment to get healthy.”

< New text box >>

Lack of exercise, not diet, linked to rise in obesity, Stanford research shows                By BECKY BACH                                                                JUL 7, 2014                                                                           

An examination of national health survey results suggests that inactivity, rather than higher calorie intake, could be driving the surge in obesity.

Inactivity rather than overeating could be driving the surge in Americans’ obesity, according to a study by a team of Stanford University School of Medicine researchers.

Examining national health survey results from 1988 through 2010, the researchers found huge increases in both obesity and inactivity, but not in the overall number of calories consumed.

“What struck us the most was just how dramatic the change in leisure-time physical activity was,” said Uri Ladabaum, MD, associate professor of gastroenterology and lead author of the study. “Although we cannot draw conclusions about cause and effect from our study, our findings support the notion that exercise and physical activity are important determinants of the trends in obesity.”

The study will appear in the August issue of The American Journal of Medicine. It’s also available online now in a draft form.

The researchers analyzed data from the National Health and Nutrition Examination Survey, a long-term project of the Centers for Disease Control and Prevention that collects information from surveys and from physical examinations to assess Americans’ health. The researchers considered survey results from 17,430 participants from 1988 through 1994 and from approximately 5,000 participants each year from 1995 through 2010.

Survey participants recorded the frequency, duration and intensity of their exercise within the previous month. The team defined “ideal” exercise as more than 150 minutes a week of moderate exercise or more than 75 minutes a week of vigorous exercise.

Correlation, not causation

The research highlights the correlation between obesity and sedentary lifestyles, but because it is an observational study, it does not address the possible causal link between inactivity and weight gain.

The percentage of women reporting no physical activity jumped from 19 percent to 52 percent between 1988 and 2010; the percentage of inactive men rose from 11 percent to 43 percent over the same period.

Obesity also increased, climbing from 25 to 35 percent in women and from 20 to 35 percent in men.

Surprisingly, however, the number of calories consumed per day did not change significantly. Nonetheless, diet remains a proven and important component of health, and participants may have been tempted to under-report how much they ate, Ladabaum said.

He added that, although the reported average caloric intake did not change substantially during those periods, it didn’t mean that the number of calories consumed were optimal. “We simply did not detect a substantial increase over time,” he said, noting that caloric intake and physical activity are both important determinants of weight.

Both obesity and abdominal girth, which the team analyzed independently, contribute to a variety of well-documented conditions, such as cancer and cardiovascular disease, as well as increased mortality.

In 2010, 61 percent of women and 42 percent of men had too much belly fat, up from 46 percent and 29 percent in 1988. In addition, the waists of even normal-weight women swelled between 1988 and 2010, the study showed.

Ladabaum noted that the study did not follow one group of participants over that 22-year span; instead, the data came from different samples in each survey cycle. But the samples are constructed to be representative of the population.

Clarion call

In an accompanying editorial, the journal’s managing editor, Pamela Powers Hannley, MPH, called the study “a clarion call.”

Obesity is a complex, multifaceted problem linked to a variety of societal factors, Hannley said in an interview. “There are societal and economic forces at work that we must address,” she said. “Take, for example, the struggle of single mothers who are trying to balance work and child care. They may lack the time or resources to exercise. We shouldn’t assume that people are just lazy. Their lives might be overwhelming to them.”

Recommendations to exercise 30 minutes a day aren’t enough, Hannley added.

“It’s going to take widespread change,” she said. “We shouldn’t just tell patients they need to work out. We need to work with communities, employers and local governments to enable healthy lifestyles by ensuring that there are safe spaces to exercise that are cheap or free.”

Other Stanford co-authors of the study are Ajitha Mannalithara, PhD, social science research associate; Parvathi Myer, MD, a former postdoctoral scholar who is now at Kaiser Permanente, and Gurkirpal Singh, MD, adjunct professor of gastroenterology.

The study was funded by the National Institutes of Health (grant T32DK007056).

Stanford’s Department of Medicine also supported the research

Change diet, exercise habits at same time for best results, study says                         By Abby King                                                                        April 21, 2013

Most people know that the way to stay healthy is to exercise and eat right, but millions of Americans struggle to meet those goals, or even decide which to change first.

Now, researchers at the Stanford University School of Medicinehave discovered that focusing on changing exercise and diet at the same time gives a bigger boost than tackling them sequentially. They also found that focusing on changing diet first — an approach that many weight-loss programs advocate — may actually interfere with establishing a consistent exercise routine.

Their findings were published online April 21in the Annals of Behavioral Medicine.

"It may be particularly useful to start both at the same time," said Abby King, PhD, lead author of the study and a professor of health research and policy and of medicine. "If you need to start with one, consider starting with physical activity first."

The few published studies on how to introduce more than one shift in healthy habits report conflicting findings — and few have looked at exercise and dietary change together. In examining the issue, the researchers also wanted to study people who specifically complained that the demands of their schedules didn't give them enough time to make healthy dietary and exercise choices. The reasoning was that if successful programs could be developed for these time-strapped individuals, they would likely work for others, as well.

Researchers split 200 initially inactive participants, ages 45 and older and with suboptimal diets, into four different groups. Each group received a different kind of telephone coaching. The first group learned to make changes to diet and exercise at the same time. The second group learned to make dietary changes first and didn't try changing their exercise habits until a few months later. The third group reversed that order and learned to change exercise habits before adding healthy dietary advice. The fourth group, for comparison, did not make any dietary or exercise changes, but was taught stress-management techniques. Researchers tracked participants' progress in all four groups for a year.

Despite the challenge of making multiple changes to their already-busy routines at once, those who began changing diet and exercise habits at the same time were most likely to meet national guidelines for exercise — 150 minutes per week — and nutrition: five to nine servings of fruit and vegetables daily, and keeping calories from saturated fats at 10 percent or less of their total intake.

Those who started with exercise first did a good job of meeting both the exercise and diet goals, though not quite as good as those who focused on diet and exercise simultaneously.

The participants who started with diet first did a good job meeting the dietary goals but didn't meet their exercise goals. King, who also is a senior researcher at the Stanford Prevention Research Center, speculates this is because changing diet and introducing exercise both have unique challenges. "With dietary habits, you have no choice; you have to eat," she said. "You don't have to find extra time to eat because it's already in your schedule. So the focus is more on substituting the right kinds of food to eat."

But, she said, finding time for exercise if you already have a busy schedule can be challenging. She pointed out that even the most successful group, those receiving the two behavioral health programs simultaneously, lagged behind in meeting the physical activity goal at first, though over the course of a year were eventually able to meet it.

King credits the way health educators explained the dietary and exercise advice to participants for their overall success and the study's high retention rate. They met with participants in person just once at the beginning of the one-year period. After that, they called once a month, spending as little as 10 to 15 minutes — and no more than 40 minutes — providing advice and support for diet and exercise.

For the participants, whose schedules and stressful lives had previously interfered with making healthy lifestyle choices, this approach worked, King said. She said that telephoning participants was a convenient and flexible way to provide personalized information. "These health behaviors aren't things that we change over a six-week period and then our job is done," she said. "They're things that people grapple with their whole lives, so to develop 'touches' of advice and support in a cost-efficient way is becoming more and more important."

Participants in this study were not actively trying to lose weight, just trying to develop healthy habits. King's next step is to test the same sequential-versus-simultaneous approaches among people who are trying to lose weight.

Other Stanford authors of the study include senior research scholar Cynthia Castro, PhD; statistical analyst David Ahn, PhD; and former postdoctoral scholars Matthew Buman, PhD, and Eric Hekler, PhD, (who are both now at Arizona State University) and Guido Urizar, PhD (now at Cal State Long Beach).

The study was supported by the National Institute on Aging (grant R01AG21010) and the National Heart, Lung and Blood Institute (grant 5T32HL007034).

Information about Stanford's Department of Medicine and Stanford's Department of Health Research and Policy, which also supported the work, is available at http://medicine.stanford.edu andhttp://hrp.stanford.edu.

A Little Exercise Goes a Long Way for Older Adults 15 minutes a day may be enough                                                                 by Parker Brown 

Action Points

  • Note that this meta-analysis of published trials suggests that even low amounts of vigorous activity were associated with longer survival in older adults.
  • Be aware that reverse causation may occasionally bias these results.

 

Even a little exercise was associated with reduced mortality for adults over 60, according to a meta-analysis of nine cohort studies.

In about 122,000 patients with an average follow-up period of 9.8 years, only 15 minutes of moderate to vigorous physical activity was associated with a 22% reduction in mortality (risk ratio 0.78, 95% CI 0.71-0.87, P<0.0001) when compared with those who did no activity. Participants who exercised for 150 minutes a week at a moderate intensity or for 75 minutes at vigorous intensity, the amounts recommended by the Physical Activity Guidelines Advisory Committee Report, had a risk reduction of 28% (RR 0.72, 95% CI 0.65-0.80, P<0.0001), reported David Hupin, MD, at CHU Saint-Etienne in France, and colleagues.

ADVERTISEMENT

The group that exercised the most (>1000 MET-min per week) had a 35% reduction (RR 0.65, 95% CI 0.61-0.70, P<0.0001), they wrote in the British Journal of Sports Medicine.

The meta-analysis showed a curvilinear relationship between physical activity and all-cause mortality: those who initially do little to no physical activity derived benefit from doing more. The authors added that much of the benefit seemed to be from a lowered risk of dying of cardiovascular disease. The relationship between activity and lower cancer mortality was less strong, but the decrease in risk was still significantly significant.

"These findings may help convince general practitioners that a lower dose of moderate to vigorous physical activity... (>3 METs) than currently recommended has health benefits," Hupin wrote in an e-mail to MedPage Today. "General practitioners who play an essential role in promoting MVPA should encourage older adults to include even low doses of MVPA in their daily lives."

The reduction in all-cause mortality was stronger for men than for women, Hupin's group noted, adding that there was a possibility that men may have overestimated their activity, or that women might have underestimated theirs.

"This protective effect appears dose-dependent and is already significant for a low dose of moderate to vigorous physical activity (or about 15 min per day), which is below current recommendations for older adults," they stated. "These results can guide future recommendations for older adults and may improve adherence to regular physical activity programs and thus their global health."

Exercise has previously been shown to offer a wide array of benefits to older adults. Astudy last year found that exercise may shield post-menopausal women from atrial fibrillation. Another 2014 study found that regular aerobic exercise for older womenappeared to enlarge an area of the brain that is often associated with memory, and a 2011 study found that aerobic exercise was linked to larger brain volume.

All of the studies examined in this analysis were prospective cohort studies in which all participants were 60 or older. Additionally, in all of the studies, the participants had no known neurodegenerative condition at the beginning of the study, there was an evaluation of moderate to vigorous physical activity, deaths were reported, there was a follow-up of at least 3 years, and relative risks were calculated. Studies that had more than 15% loss to follow-up or evaluated low-intensity physical activity were not included.

Four of the cohorts included women only, two included men only, and three included both men and women.

Researchers used the metabolic equivalent of task (MET) to measure the energy expenditure, or "dose," of an activity. Resting energy expenditure was assumed to be 1 MET; vigorous exercise was more than 6 METs. Brisk walking fell into the moderate exercise category (3-5.9 METs). The low physical activity group had 1-499 MET-min, the medium group 500-999 MET-min, and the highest group more than 1,000 MET-min.

The authors pointed out that the targets for physical activity might be too high, discouraging some adults from exercising at all for fear they won't hit the target. "The fact that any effort will be worthwhile may help convince those 60% of participants over 60 years of age, who do not practice any regular physical activity, to become active," they wrote.

Limitations of the study included a risk of bias due to the uncertainty of doses in some of the studies. In addition, two of the larger studies in the analysis contributed to 61% of the results, and the cohorts evaluated were not geographically diverse.

Hupin told MedPage Today that he is interested in looking at the benefits of replacing sitting with light-intensity activities.

"Our future studies using objective measures of moderate- and vigorous-intensity and light-intensity physical activity will be helpful to add clarity," he wrote.

 

More Muscles Linked to Longer Life

 

Older adults with greater muscle mass had a lower risk of death during study period

WebMD News from HealthDay
 

By Robert Preidt

HealthDay Reporter

TUESDAY, March 18, 2014 (HealthDay News) -- The more muscle older adults have, the lower their risk of death, according to a new study.

Researchers analyzed data from more than 3,600 older adults who took part in the U.S. National Health and Nutrition Examination Survey between 1988 and 1994. The participants included men 55 and older and women 65 and older.

 
 
 

As part of the survey, the participants underwent tests to determine their muscle mass index, which is the amount of muscle relative to height.

The investigators used a follow-up survey done in 2004 to determine how many of the participants had died of natural causes and how muscle mass was related to death risk. People with the highest levels of muscle mass were significantly less likely to have died than those with the lowest levels of muscle mass.

"In other words, the greater your muscle mass, the lower your risk of death," study co-author Dr. Arun Karlamangla, an associate professor in the geriatrics division at University of California, Los Angeles School of Medicine, said in a university news release. "Thus, rather than worrying about weight or body mass index, we should be trying to maximize and maintain muscle mass."

The study was published online recently in the American Journal of Medicine.

The findings add to growing evidence that overall body composition is a better predictor of all-cause death than body mass index (BMI), according to the researchers. BMI is an estimate of body fat based on weight and height.

However, the study only shows an association, not a cause-and-effect relationship, between muscle mass and risk of death, the study authors noted in the news release.

"As there is no gold-standard measure of body composition, several studies have addressed this question using different measurement techniques and have obtained different results," study leader Dr. Preethi Srikanthan, an assistant clinical professor in the endocrinology division at the UCLA School of Medicine, said in the news release.

Many studies that investigate how obesity and weight affect the risk of death look only at BMI, Srikanthan pointed out. "Our study indicates that clinicians need to be focusing on ways to improve body composition, rather than on BMI alone, when counseling older adults on preventative health behaviors," she explained.

Future research should focus on pinpointing the types and amounts ofexercise that are most effective in improving muscle mass in older adults, the study authors concluded.

How Exercise Changes Our DNA                           By GRETCHEN REYNOLDS   The New York Times

<< New tex

DECEMBER 17, 2014 12:01 AM December 17, 2014 12:01 am 175 Comments

We all know that exercise can make us fitter and reduce our risk for illnesses such as diabetes and heart disease. But just how, from start to finish, a run or a bike ride might translate into a healthier life has remained baffling.

Now new research reports that the answer may lie, in part, in our DNA. Exercise, a new study finds, changes the shape and functioning of our genes, an important stop on the way to improved health and fitness.

The human genome is astonishingly complex and dynamic, with genes constantly turning on or off, depending on what biochemical signals they receive from the body. When genes are turned on, they express proteins that prompt physiological responses elsewhere in the body.

Scientists know that certain genes become active or quieter as a result of exercise. But they hadn’t understood how those genes know how to respond to exercise.

Enter epigenetics, a process by which the operation of genes is changed, but not the DNA itself. Epigenetic changes occur on the outside of the gene, mainly through a process called methylation. In methylation, clusters of atoms, called methyl groups, attach to the outside of a gene like microscopic mollusks and make the gene more or less able to receive and respond to biochemical signals from the body.

Scientists know that methylation patterns change in response to lifestyle. Eating certain diets or being exposed to pollutants, for instance, can change methylation patterns on some of the genes in our DNA and affect what proteins those genes express. Depending on which genes are involved, it may also affect our health and risk for disease.

Far less has been known about exercise and methylation. A few small studies have found that a single bout of exercise leads to immediate changes in the methylation patterns of certain genes in muscle cells. But whether longer-term, regular physical training affects methylation, or how it does, has been unclear.

So for a study published this month in Epigenetics, scientists at the Karolinska Institute in Stockholm recruited 23 young and healthy men and women, brought them to the lab for a series of physical performance and medical tests, including a muscle biopsy, and then asked them to exercise half of their lower bodies for three months.

One of the obstacles in the past to precisely studying epigenetic changes has been that so many aspects of our lives affect our methylation patterns, making it difficult to isolate the effects of exercise from those of diet or other behaviors.

The Karolinska scientists overturned that obstacle by the simple expedient of having their volunteers bicycle using only one leg, leaving the other unexercised. In effect, each person became his or her own control group. Both legs would undergo methylation patterns influenced by his or her entire life; but only the pedaling leg would show changes related to exercise.

The volunteers pedaled one-legged at a moderate pace for 45 minutes, four times per week for three months. Then the scientists repeated the muscle biopsies and other tests with each volunteer.

Not surprisingly, the volunteers’ exercised leg was more powerful now than the other, showing that the exercise had resulted in physical improvements.

But the changes within the muscle cells’ DNA were more intriguing. Using sophisticated genomic analysis, the researchers determined that more than 5,000 sites on the genome of muscle cells from the exercised leg now featured new methylation patterns. Some showed more methyl groups; some fewer. But the changes were significant and not found in the unexercised leg.

Interestingly, many of the methylation changes were on portions of the genome known as enhancers that can amplify the expression of proteins by genes. And gene expression was noticeably increased or changed in thousands of the muscle-cell genes that the researchers studied.

Most of the genes in question are known to play a role in energy metabolism, insulin response and inflammation within muscles. In other words, they affect how healthy and fit our muscles — and bodies — become.

They were not changed in the unexercised leg.

The upshot is that scientists now better understand one more step in the complicated, multifaceted processes that make exercise so good for us.

Many mysteries still remain, though, said Malene Lindholm, a graduate student at the Karolinska Institute, who led the study. It’s unknown, for example, whether the genetic changes she and her colleagues observed would linger if someone quits exercising and how different amounts or different types of exercise might affect methylation patterns and gene expression. She and her colleagues hope to examine those questions in future studies.

But the message of this study is unambiguous. “Through endurance training — a lifestyle change that is easily available for most people and doesn’t cost much money,” Ms. Lindholm said, “we can induce changes that affect how we use our genes and, through that, get healthier and more functional muscles that ultimately improve our quality of life.”

t box >>

Weight Training: Do's and Don'ts of Proper Technique

Effective weight training depends on proper technique. Follow these do's and don'ts to maximize your weight training program. 

By Mayo Clinic staff 

You don't have to be a bodybuilder or professional athlete to reap the benefits of weight training. When done correctly, weight training can help you lose fat, increase your strength and muscle tone, and improve your bone density. If done incorrectly, however, weight training won't give you these benefits — and may even lead to injury. 

Check your technique

You might learn weight training techniques by watching friends or others in the gym — but sometimes what you see isn't safe. Incorrect weight training technique can lead to sprains, strains, fractures and other painful injuries that may hamper your weight training efforts. If you're just getting started, work with a knowledgeable weight training specialist — a physical therapist, athletic trainer or other fitness specialist who's familiar with proper weight training technique. If you've been using weights for a while, consider scheduling time with a trainer to demonstrate your technique and identify any changes you may need to make. 



Quickest Way to Lose Weight for Those Stressful Corporate and Business Professionals

by Lisa Huttons

As a very busy business professional, everyone is generally in a hurry; progressing from scheduled appointment to scheduled appointment and also hurrying deadline following deadline. For many individuals, getting some exercise is the very least of our fears. The truth is, most of us are simply way too completely maxed following a incredibly long work day to allow them to trudge our way to a fitness center to get a reasonable work out. For individuals that do make it to a health club, very like they will not be totally maximizing their own exercise time by simply engaging in the routines that make any difference.

So in the following paragraphs, I am going to demonstrate the quickest way to lose weight in order to get the most optimum results within the least amount of time.

Exercises tend to be typically grouped into 2 types: isolation and compound.

Isolation exercises: 
Much like the term implies, isolation exercises are individual joint workouts that isolate an individual body part. Types of isolation exercises can be triceps extension, bicep curls, leg extension and also lateral shoulder raises.

Compound exercises: 
These are generally multi-joint exercises that works a number of muscle groups simultaneously. Examples of compound exercises would be bent over rows, bench press, pushups, squats, dips, pull ups not to mention dead lifts.

Should your purpose is to burn fat as well as burn unhealthy calories, then the quickest way to lose weight and also entirely improve your exercise routine period would be to only concentrate on just compound exercises. The nature of compound exercises call for much more effort from your very own body and as a result, it comes with a much better calorie expenditure per work out ratio.

For instance, why don't we do a comparison of 2 leg exercises:

1. Leg extensions: isolation exercise

2. Barbell squats: compound exercise

When executing leg extensions, really the only muscle groups focused tend to be generally your own upper thighs (quadriceps) along with a little of your calf muscles.

Barbell squats conversely, stimulates not merely your upper thighs, but additionally your hamstrings, calf muscles, small of the back, abdominal muscles as well as backside! (Which means this one single physical exercise properly focuses on almost all trouble spots that a lot of women have concerns with)

Let's assume that most of us devote exactly the same period of time doing both exercises, the barbell squats undoubtedly burns up much more calories plus it also concentrates on numerous muscle groups at the same time workout some other body parts.

Therefore the next time for anybody who is in a hurry and they are interested in the quickest way to lose weight, choose solely compound exercises and that you will rapidly notice as well as feel the big difference.



Being Fit Can Protect Against Developing, Dying of Cancer

 Roxanne Nelson May 16, 2013

 

Cardiorespiratory fitness (CRF) appears to be a strong independent predictor of not only developing 2 common cancers, but also the prognosis.

The risk of developing both lung and colorectal cancer were decreased by 68% and 38%, respectively, in men with the highest levels of fitness, as compared with those who were the least fit, according to a new study.

A high level of fitness was also associated with a 14% reduction in cancer-specific mortality (hazard ratio [HR], 0.86; < .001), and a 23% reduction in cardiovascular-specific mortality (HR, 0.77; P < .001).

"It is well accepted that fitness is a powerful way to predict cardiovascular disease and survival, even above other risk factors including self reported physical activity, said lead study author Susan Lakoski, MD, assistant professor of medicine at the University of Vermont, in Burlington."Unfortunately, little is known about fitness as a predictor of cancer incidence and subsequent outcomes in patients who develop cancer."

"This is important to identify robust predictive markers as its becoming increasingly necessary as cancer incidence is projected to increase over the next 2 decades," said Dr. Lakoski. "Patients are now expected to live sufficiently long to be at risk for non–cancer related mortality, specifically cardiovascular disease."

Dr. Lakoski presented the findings of her research at a press briefing held in advance of the 2013 annual meeting of the American Society of Clinical Oncology® (ASCO).

Few studies have examined the prognostic importance of CRF in relationship to cancer incidence or cause-specific mortality following a cancer diagnosis in men. In the current study, Dr. Lakoski and colleagues evaluated the association between CRF and the incidence of prostate, lung, or colorectal cancer in men, and subsequent cause-specific mortality among men who had received a cancer diagnosis.

The cohort included 17,049 men (mean age, 50 years) who had received a single cardiovascular fitness assessment as part of a specialized preventive health check-up visit that was offered at the Cooper Institute, in Dallas, Texas. Performance was recorded in established units of fitness called metabolic equivalents (METs). The participants were then separated into 5 quintiles according to their fitness performance.

Medicare claims were then subsequently analyzed to identify the participants who had developed lung, colorectal, or prostate cancer. The mean times from their initial CRF assessment to cancer incidence and death were 20.2 ± 8.2 years and 24.4 ± 8.5 years, respectively. During this time period, a total of 2885 men were diagnosed with prostate, lung, or colorectal cancer (2332 with prostate cancer, 276 with colorectal cancer, and 277 with lung cancer).

Within the study period, a total of 769 men died of all-cause mortality, with 347 of those deaths due to cancer, and 159 to cardiovascular disease.

"Fitness did not significantly impact prostate cancer risk," Dr. Lakoski said. "The data was also adjusted for risk factors such as body weight and age."

Compared with men in the lowest CRF quintile, the adjusted hazard ratio for lung, colorectal, and prostate cancer incidence among men in the highest CRF quintile was 0.32 (95% confidence interval [CI], 0.20 - 0.51; < .001), 0.62 (95% CI, 0.40 - 0.97; = .05), and 1.13 (95% CI, 0.97 - 1.33; = .14), respectively. For men who developed cancer, cancer-specific mortality and cardiovascular-specific mortality decreased across increasing CRF quintiles (values < .001).

For example, even a small improvement in fitness levels (1-MET increase in CRF) was associated with a 14% reduction in cancer-specific mortality (HR, 0.86; 95% CI, 0.81 -  0.91; < .001) and a 23% reduction in cardiovascular-specific mortality (HR, 0.77; 95% CI, 0.69 - 0.85; < .001).

Everyone Can Benefit

The study authors also found that that even if the men weren't obese, those who had low fitness had an increased risk for cancer and cardiovascular disease.

Exercise Gains Momentum as Psychiatric Treatment

Nancy A. Melville

 Nov 16, 2012 Authors & Disclosures

SAN DIEGO, California – The benefits of exercise in nearly every aspect of physical health are well known, but evidence in recent years suggests a unique effect on some psychiatric disorders, prompting mental health clinicians to rethink treatment strategies and to consider the possibility of exercise not just in therapy but as therapy.

"Above and beyond the standard benefits of exercise in healthy living and general well-being, there is strong evidence demonstrating the ability of exercise to in fact treat mental illness and have significant benefits on a neurotrophic, neurobiologic basis," Douglas Noordsy, MD, told delegates attending Psych Congress 2012: US Psychiatric and Mental Health Congress.

Some of the strongest evidence is seen in depression, where psychiatric benefits from exercise have been shown in some cases to match those achieved with pharmacologic interventions and to persist to prevent remission in the long term.

Dr. Noordsy referenced a study from researchers at Duke University in which 156 patients with major depressive disorder (MDD) were randomly assigned either to aerobic exercise, sertraline therapy (50 mg to 200 mg), or both for 4 months.

The difference in remission rates in the exercise and selective serotonin reuptake inhibitor (SSRI) groups after 4 months were not significant – 60% and 69%, respectively, but at a 10-month follow-up, the exercise group showed a significantly lower relapse rate ( P = .01) (Psychosom Med 2000;62:633-638).

"The patients who were independently exercising on their own after the treatment period had half the odds for meeting the depression criteria 6 months later compared to patients who didn't exercise after the 4-month study," said Dr. Noordsy, an associate professor and director of psychosis services at the Geisel School of Medicine at Dartmouth College, in Hanover, New Hampshire.

A similar study from the same group of researchers 10 years later in a larger sample involving 202 patients assigned to supervised exercise, sertraline therapy (50 mg to 200 mg) or placebo showed remission rates of 46% at 4 months and 66% at the 16-month follow-up across both treatment groups, with no significant greater improvement with SSRIs compared with exercise in predicting MDD remission at 1 year ( Psychosom Med 2011 Feb-Mar;73:127-33; epub 2010 Dec 10).

Other studies have shown equally impressive results in exercise for a variety of populations, including pregnant women with depression, who have a high interest in avoiding medications, people with HIV, and even patients with heart failure, who showed not only a significant reduction in depression related to exercise but also reduced mortality ( Am J Cardiol2011;107:64-68).

Anxiety

The evidence in relation to anxiety, although not as strong, still suggests a benefit, and the rigors of a cardiovascular workout seem particularly suited to addressing the physiologic effects associated with anxiety, Dr. Noordsy said.

"We know that with anxiety, the heart rate goes up, you start breathing fast, and it kind of snowballs with more anxiety, and that can trigger a panic attack," he explained.

"So one of the important positive effects of physical exercise is it allows people to become conditioned to having their heart rate and respiratory rate increase when they're not associated with anxiety, thereby addressing the triggers."

Evidence is somewhat lacking in the area of bipolar disorder, but patients often have symptoms similar enough to depression to suggest a benefit, Dr. Noordsy said.

"The evidence on depression in bipolar disorder is strong enough that I certainly feel comfortable in talking about exercise as part of [bipolar patients'] management."

In terms of more serious psychotic disorders such as schizophrenia, evidence is limited on benefits of exercise for the core symptoms of psychosis or cognition. However, several studies have shown improvement in comorbidities and metabolic issues related to antipsychotics that such patients commonly face.

One study of a jogging intervention among 80 inpatients with chronic schizophrenia, in which 40 patients jogged for 40 minutes 3 times a week, depression, anxiety, phobia, and obsessive-compulsive behaviors declined significantly compared with 40 inpatient control participants who were inactive and showed no improvement.

Dementia Prevention

The evidence on the benefits of exercise in cognitive function disorders, such as dementia and Alzheimer's disease, is much more extensive, with as many as 8 strong studies on dementia alone in the last 3 years showing improvements with activities such as walking and strength training on memory and executive function.

Dr. Noordsy noted one particularly remarkable study in which researchers compared patients with and without the ApoE gene, which is linked strongly to late-onset Alzheimer's disease.

In the study, patients who were ApoE-negative showed similarly low mean cortical binding potential, related to plaque buildup in the brain, regardless of whether they exercised or not.

But although ApoE-positive individuals (n = 39) had values that were substantially higher, the ApoE-positive patients who exercised (n = 13) had values similar to those who did not carry the gene ( Arch Neurol 2012;69:636-643).

"You could look at these results and rightfully say physical exercise neutralizes your risk for developing Alzheimer's disease if you're ApoE positive," Dr. Noordsy said.

How to Get Patients Moving

Perhaps the biggest caveat with all mental health conditions is how to motivate patients who are struggling with psychiatric disorders to exercise.

Dr. Noordsy offered some key suggestions:

  • Start with an assessment: "I start with an assessment of lifetime history of activity and current activity in my baseline assessment template," Dr. Noordsy said. "I educate the patient on the potential effects of exercise on their disorder and how it fits on the menu of other treatment options."
  • Make clear recommendations: "There is a lot of evidence in areas such as smoking cessation and in the addiction literature showing that a substantial subset of people will respond to very clear recommendations," he said.
  • Offer motivational tools: A behavioral planner, for instance, that allows for goal setting, or connecting a patient with an exercise group can be helpful.
  • Consider the patient's current activity capacity in recommending a regimen: "The general amount of exercise believed to result in a benefit is about 30 to 60 minutes per day, between 3 and 7 days per week." Some studies have shown strength training to be as beneficial as aerobic activity. For the latter, Dr. Noordsy suggested that one easy method often used in determining maximum heart rate, in general, for people without heart disease or other conditions is to simply subtract their age from 220.
  • Help the patient find an activity that works best for them, rather than recommending anything specific, Dr. Noordsy suggested. "Have the patient choose the activity that is right for them."
  • Help guide the patient to educational resources, such as information sources or books. "The book I've used the most with patients is John Ratey's Spark: The Revolutionary New Science of Exercise and the Brain," Dr. Noordsy recommended. "The book is very scientific and accessible to a lay audience," he said.

Importantly, discussing the role of exercise in the context of human evolution might be a more effective approach with patients than the standard recommendation to get some exercise.

"Instead of 'this is something you ought to be doing,' we might instead say, 'this is something humans are designed to do, and when we don't do it, our bodies and brains fall apart'."

Another important component in helping patients benefit from exercise is simply to improve awareness among clinicians, Dr. Noordsy added.

"We see evidence on the benefits of exercise for psychiatric conditions coming together, and there is a need to increase awareness of this among clinicians as well as reinforce the research community to be taking a more careful look at physical exercise," he said.

"This may not have as much of an industrial backing as some of the other interventions we use, but I think it's quite exciting."

Psych Congress 2012: US Psychiatric and Mental Health Congress. Presented November 9, 2012.



Exercise for Weight Loss: Calories Burned in 1 Hour

By Mayo Clinic staff

Being active is an important part of any weight-loss or weight-maintenance program. When you're active, your body uses more energy (calories). And when you burn more calories than you consume, you lose weight.Because 3,500 calories equals about 1 pound (0.45 kilogram) of fat, you need to burn 3,500 calories more than you take in to lose 1 pound. So if you cut 500 calories from your diet each day, you'd lose about 1 pound a week (500 calories x 7 days = 3,500 calories). Because of changes that occur in the body over time, however, calories may need to be decreased further to continue weight loss.While diet has a stronger effect on weight loss than physical activity does, physical activity, including exercise, has a stronger effect in preventing weight gain and maintaining weight loss.For most healthy adults, the Department of Health and Human Services recommends these exercise guidelines:

•   Aerobic activity. Get at least 150 minutes a week of moderate aerobic activity or 75 minutes a week of vigorous aerobic activity. However, to effectively lose or maintain weight, some people may need up to 300 minutes a week of moderate physical activity. You also can do a combination of moderate and vigorous activity. The guidelines suggest that you spread out this exercise during the course of a week, and sessions of activity should be at least 10 minutes in duration.

•   Strength training. Do strength training exercises at least twice a week. No specific amount of time for each strength training session is included in the guidelines.Moderate aerobic exercise includes such activities as brisk walking, swimming and mowing the lawn. Vigorous aerobic exercise includes such activities as running and aerobic dancing. Strength training can include use of weight machines, or activities such as rock climbing or heavy gardening.Specific calorie expenditures vary widely depending on the exercise, intensity level and your individual situation.



EXERCISES TO REDUCE CELLULITE IN BUNS & THIGHS

 

While cellulite is not a medical concern, Mayo Clinic reports that the presence of dimply skin in the butt, thighs or legs makes women feel self-conscious. Cellulite is caused by fat cells that push up through the surface of the skin. According to Mayo Clinic, it affects eight out of 10 women. While complete removal of cellulite in the buns and thighs may be impossible, regular cardio combined with strength training exercises that target the glutes and thighs reduce cellulite's appearance.

 

STRENGTH TRAINING & CARDIO EXERCISES

Wayne Westcott, fitness research director at the South Shore YMCA in Quincy, Massachusetts, conducted an eight-week study evaluating the role cardio and strength training play in cellulite reduction. Study participants did three weekly 20-minute sessions of cardio and three weekly 20-minute full-body strength training sessions. Participants lost 1 lb per week and those who dieted doubled their weight loss. According to the American Council on Exercise (ACE), this weekly formula for exercise improves body composition and reduces cellulite.
Lunges and squats are examples of lower body strength training exercises, and upper body exercises include bicep curls, push-ups and rows. According to ACE, it is impossible to target a specific area for weight loss--toning the entire body contributes to cellulite reduction and burns fat in the thighs and buns. Appropriate modes of cardio exercise include swimming, hiking, running, cycling, dancing and speed walking.

LUNGES

Lunges tones the glutes, inner thighs and leg muscles while firming surrounding skin. Mayo Clinic reports that cellulite becomes more visible when skin loses elasticity. To perform a lunge, stand up straight and bend your knees slightly. Next, adjust your feet so that they are shoulder-width apart and relax your shoulders. Step your right foot forward three feet, aligning your right knee directly over your right ankle while lifting onto the toes of your left foot. Lower your left knee towards the ground, stopping before it hits the floor. Finally, push up through the heel of your right foot and return to standing. After completing 15 lunges with your right leg, switch leg positioning and do the same with your left leg.

DUMBBELL SQUATS

ACE recommends the dumbbell squat exercise as an effective way to reduce cellulite in the lower body. Squatting challenges the inner thighs and glutes while slimming the legs. To do a dumbbell squat, hold a light weight in each hand and rest your arms by your side. Next, adjust your feet so that they are hip-width apart, align your knees with your ankles and bend your knees slightly. Tightening your abdominal muscles helps you maintain proper form during this exercise. Stick your glutes out behind you and lower your hips toward the ground. Finally, stop when the backs of your legs are parallel to the ground, push up through your heels and return to standing. As you build strength, increase the weight you hold for additional gains.



 :

Med Sci Sports Exerc. 2010 Jul;42(7):1286-95.

Resistance training predicts 6-yr body composition change in postmenopausal women.

Bea JWCussler ECGoing SBBlew RMMetcalfe LLLohman TG.

Source

Arizona Cancer Center, University of Arizona, Tucson, AZ 85724-5024, USA. jbea@azcc.arizona.edu

Abstract

PURPOSE:

The aim of this study was to examine the association of exercise frequency (ExFreq) and volume (total weight lifted by military press and squats (SQ)) with change in body composition among postmenopausal women participating in a progressive resistance training study.

METHODS:

Previously, sedentary women (n = 122, age = 56.3 +/- 4.3 yr) were followed for 6 yr. At 6 yr, there were women who had been randomly assigned to resistance training at baseline (n = 65) controls that were permitted to cross over to the exercise program at 1 yr (n = 32) and 25 true controls. Exercisers and crossovers directed to perform eight core exercises for two sets of eight repetitions at 70%-80% of one-repetition maximum, three times weekly, plus progressive weight bearing, stretching, and balance. Body weight and fat were measured at baseline and annually using anthropometry and dual-energy x-ray absorptiometry.

RESULTS:

Average change in body weight and total body fat were 0.83 +/- 5.39 and 0.64 +/- 4.95 kg at 6 yr, respectively. In multiple linear regression, ExFreq, military press, and SQ were significantly inversely associated with change in body weight (standardized beta coefficient (SBC) = -0.22 to -0.28, P < 0.01), fat (SBC = -0.25 to -0.33, P < 0.01), and trunk fat (SBC = -0.20 to -0.31, P < 0.03) after adjusting for age, years on hormone therapy, change in lean soft tissue, baseline body composition, and baseline habitual exercise. The lowest tertile of SQ (equivalent to 2.5% attendance) demonstrated significant gain in weight, fat, and trunk fat over 6 yr (P < 0.004), whereas the highest tertile SQ (equivalent to 64% attendance) was able to maintain their weight, total, and regional fat.

CONCLUSIONS:

We conclude that resistance training is a viable long-term method to prevent weight gain and deleterious changes in body composition in postmenopausal women.



 

Exercises Such as Strength Training

Benefit Kids and Teens

Strength Training Heightens Children and Teens Muscle Strength

By Debbie Nicholson

In the past strength training for children and teens held an array of doubt to its effectiveness to provide any benefits. Now researchers are in total support of the National Strength and Conditioning Council (NSCA) which advocates that strength training with the watchfulness of a qualified trainer at two or three times a week is healthy for teens and children.

In the past many concerns had been noted that school-aged children and teenagers could suffer a high risk of injuries through strength training. Strength training which is done by free weights, exercise machines, elastic bands and the bodies own resistance.

Studies recently now have dispelled this theory of thought. It has been demonstrated that risk of injury from strength training is no higher than sports or other type of exercises. Now experts in the field states that it does provide possible benefits like increased bone density, lessens body fat, boosts performance and actually aides in reduction of sports injuries.

This new study which is published in the Journal of Pediatrics, examined age and other factors that could provide benefits in strength training for the young.

At the German Sport University, Dr. Michael Behringer and associates added the findings of 42 past studies which consisted of 1,728 children and teenagers that at random were assigned to perform strength training under supervision or they served as the control group.

In a majority of the studies, children had used free weights or resistance-training machines. Ranging from use of one to five times a week in average 40 minute sessions. The training had lasted from a period of one month to just slightly over a year.

In general the researchers had found the training had been effective in heightening strength, gains were higher among older children in comparison to children of prepubescent age (around 10 or younger). A few sessions per week had shown better results than just one session a week and longer training sessions were greater than shorter ones for benefits.

The average strength gain had varied broadly. Although, a large portion did show improvements in strength by 20 to 40 percent of their start levels.

Exercises involved isotonic contractions meaning those exercises such as bicep curls and squat and bench presses seemed to be the most effective.

Dr. Behringer has stated that since strength training has proved effective for children and teens and is proved to be safe along with yielding health benefits, children and teens should be encouraged to take part in resistance-training programs. There information does show it is effective for all ages.

According to researchers, the data is in line with the 2009 guidelines from NSCA, which advocates strength training at two or three times a week. The report shows that children around ages seven or eight who are old enough to play sports are also usually ready for strength training.

NSCA does highly advise that the performance of strength training should be done with a qualified trainer or part of a school physical education or athletic training program as an example.

If qualified trainers and age appropriate equipment and safe training environment are not available than youths should not do resistance exercise due to the possibility for risk of injuries.

Facts on fitness of teens and children

Almost half of the children aged 12 to 20 years old are not active on a daily basis.

As children grow by age and school grade their sports participation actually declines.

Among all high school students only 20 minutes a day at five days a week are they physical active in physical education classes.

Benefits of physical activity for teens and children

Physical activity aides in building strong bones, muscles and joints.

Aides in obesity by controlling weight, building lean muscles and reduction of fat.

Provides prevention or delays in development of high blood pressure and can aide in reducing high blood pressure in some teens with hypertension.

How to start strength training for teens and children

Coaches and personal trainers are great resources to use for your children. They are trained in the area of youth strength training. They can develop a safe and effective program geared to age, size, skills and interests. Check your local community such as the YMCA for programs which are geared to the child's age.

Have them warm up their muscles and reduce injury. Encourage them to spend around five or ten minutes before strength training session doing simple things like aerobics, walking or even jumping rope.

Children are able to lift adult size weights providing they are light enough. Usually repetitive sets of 12 to 15 is adequate. Body weight exercises like push-ups can also be used and are just as effective.

Do not center your attention on how much they can lift. Instead center on correct form and technique of the exercise. Gradually they can add resistance and number of repetitions as they grow older.

Make sure they rest one complete day in between each muscle group.

Strength training exercises:

Beginning body weight exercises:

Push-ups, chin-ups, pull-ups (palms facing)

Squats and squat thrusts

Lunges, dips and crunches

Grip strength

Hanging on the chin up bar

Rope climbing

Advanced body weight exercises:

Hand Stand push-up

One leg squats

One arm push-ups

One arm chin-ups, pull-ups (palms facing)

Burpees (squat thrusts with a clap)

Grip strength

Rope climbing using arms only

Wringing water out of a wet towel

Just remember that strength training is totally safe and increases strength while providing health benefits to overall fitness and health.

Sources:

Reuters

Medicine Net

Mayo Clinic

Section One Wrestling



Increased Lower Body Strength Promotes Independent Lives for Seniors

Information provided by Katie Huffstetler 

Published: 2010-07-07

A recent study done by a collaboration of researchers from Wake Forest University (WFU) and Homestead Hills suggests that a significant number of residents living in retirement communities have deficits in lower body strength.

 

A recent study done by a collaboration of researchers from Wake Forest University (WFU) and Wake Forest University Baptist Medical Center (WFUBMC) suggests that a significant number of residents living in retirement communities have deficits in lower body strength, a key indicator in estimating how independent seniors may remain in the future. A follow-up study found a resistance exercise program was effective at improving muscle strength within six weeks.

The study, conducted by investigators in the Department of Health and Exercise Science at WFU and the Department of Geriatric Medicine at WFUBMC, was developed in conjunction with Homestead Hills, a Winston-Salem, N.C.-based retirement community, and the Center on Aging at WFUBMC. Through a partnership with Homestead Hills’ parent company, researchers from the Center evaluated the physical function of approximately 230 older adults living in retirement communities throughout the Southeast.

The researchers, including Jack Rejeski, Ph.D., Tony Marsh, Ph.D., Shannon Mihalko, Ph.D. and Jeff Williamson, M.D., M.H.S., found a high proportion of participants had deficits in lower extremity strength. The follow-up study by Rejeski, Marsh, and Mihalko measured the impact of lower-body strength training on muscle strength and physical function in those residents. All 29 seniors who participated were Homestead Hills’ members and the participants were randomized into two groups: a control group whose members maintained their normal daily routine, and a progressive resistance exercise group which met for about 30 minutes, three times a week for six weeks.

To develop a baseline, all 29 adults were evaluated at the beginning and end of the six-week intervention. Their lower-body strength and physical function were measured by a one repetition, maximum strength test for both the leg extension and leg curl, a timed 400 meter walk test and the Short Physical Performance Battery which tests walking speed, balance and lower- limb strength.

The progressive resistance exercise group completed a variety of exercises designed to increase leg strength. Residents wore weighted vests for resistance while performing toe raises and step-ups on an aerobic step, and used strength training equipment for leg extension and flexion exercises.

Adults who participated in the lower-body strength training exercises had an average increase in leg extension strength of 51 percent and an average increase in leg curl strength of 31 percent, while the strength of those in the control group did not change.

Participants such as Roburta Trexler, a retired physical therapist, also reported increased confidence in their walking ability.

“I feel like I’m definitely making some improvements,” Trexler said, while resting in between exercises inside Homestead Hills’ wellness center. “When I walk across the floor, I feel more secure, and I plan to continue with the exercises because I would like to walk with a feeling of confidence, improve my posture and stand up without hurting.”

Lower body strength is vitally important because it is a key determinant of mobility which allows older adults to perform activities of daily living such as bathing, dressing and getting in and out of bed without the help of a caregiver. Research suggests that strength-training exercises also improve balance, helping participants reduce their chance of falling which may lead to disability, hospitalization and other negative complications.

Ruth Kessler, a member of the progressive resistant exercise group, is all too familiar with the side-effects of a catastrophic fall. The Homestead Hills’ member fractured her left femur two years ago, and the recovery has been long and difficult.

“At the beginning of the six-week period, it was extremely difficult for me to get up from a seated position,” Kessler said. “After I finished the sessions, I progressed from lifting 40 pounds to lifting 70 pounds with my leg curls, and I can do five chair-stands now when I couldn’t even do one before.”

At the end of the six-week intervention, the control group was offered six weeks of training, and the participants in the exercise group were encouraged to continue with the resistance exercise program. Due to popular demand, Homestead Hills’ Wellness Coordinator Sandi Griswold is planning to extend the program indefinitely.

“Once members found out they were in the control group and saw the results their counterparts were having, they couldn’t wait for the end of the first six weeks so they could get started,” Griswold says with a laugh. “Their enthusiasm is contagious, and with all the information WFU and WFUBMC have collected, the program is a way to not only improve our members’ lives but also to better the lives of thousands of seniors across North Carolina.”

The Department of Health and Exercise Science and the Center on Aging will use the data collected at Homestead Hills to recommend that providers develop senior wellness programs which emphasize preventative, affordable exercises that help older adults live healthier, more independent lives. In addition to the partnership with Senior Living Communities, pilot grants from the WFUBMC Translational Science Institute and the WFUBMC Claude D. Pepper Older Americans’ Independence Center supported the study.

Homestead Hills’ member Sally Bost agrees that preventative wellness programs are beneficial for seniors and thinks the amount of effort people put into the program is directly related to the benefits they will receive. The 76-year-old also thinks retirement communities are a good solution for older adults because of the combination of peer support and senior-focused amenities.

“I needed the encouragement of my friends and fellow members to keep myself honest in my exercise,” Bost said. “It’s too easy to say ‘oh you’re getting older, this is what you should expect,’ but I say ‘No way! You can’t quit just because you’re older!”

Homestead Hills is an all-inclusive, luxury retirement community located in Winston-Salem, N.C. The community’s care-free lifestyle helps members live longer, healthier and happier lives by offering an array of amenities including maintenance-free living, daily fine dining, weekly housekeeping, a personalized wellness program and onsite health services. Homestead Hills is located in close proximity to the J. Paul Sticht Center on Aging at Wake Forest University Baptist Medical Center, a corporate research partner delivering cutting-edge breakthroughs in senior care. The gated community offers residents a variety of floor plans including single-family cottage homes and condominium-style villas. Assisted-living and memory-care rooms are also available for those who need to make a transition from independent living. More information about Homestead Hills is located at www.Homestead-Hills.com.






Strength training key in preventing     Alzheimer's


July 16th, 2012

 

It’s well-known that exercising to maintain a healthy heart also helps create a healthy mind.  But several new studies suggest that when it comes to preventing dementia, not all forms of exercise are created equal.

Studies presented at this year’s Alzheimer’s Association International Conferencefound that resistance training was particularly beneficial for improving the cognitive abilities of older adults.

While the studies were small, all including 150 participants or less, they did seemed to indicate that resistance training – such as weight lifting or using resistance bands – could possibly be an intervention for dementia in older adults.

One study divided a group of 86 women, all between the ages of 70 and 80, into three different exercise groups: Weight lifting, walking, or balance and tone exercises.  Each group did the exercises twice a week for 6 months.

Everyone appeared to benefit from the exercise. 

“We actually imaged their brains, using functional MRIs – and these people showed better brain function,” explained lead investigator, Dr. Teresa Liu Ambrose.

Participants were tested for cognitive executive functions such as attention, memory and planning. According to Ambrose, “the cognitive executive function and associated memory – those are the two traits most linked to dementia.”

At the end of the trial, those in the weight lifting group were most improved.

Ambrose, who is the director of the Aging, Mobility, and Cognitive Neuroscience lab at the University of British Columbia, tells CNN: "We accept that exercise is the golden bullet – but we need to identify who might benefit the most from what exercise.”

“It’s definitely one of the first times resistance training has been looked at in connection with Alzheimer’s. And we’ve seen in that body of literature that people who do resistance training increase their ability to be more mobile, but it may have some other benefits,” said Heather Snyder of the Alzheimer’s Association.

What was also striking was that those who started with a higher cognitive baseline actually gained the most benefits from exercise.

Ambrose led another study that followed 155 women, aged 65 to 75, over the course of a year, who did either strength training or balance and toning exercises.

“You would think if you had more impairment, you would have more improvement, but this says the opposite. This highlights that resistance training improves cognition, but you really have to consider a person's cognitive abilities,” said Ambrose.

According to the Alzheimer’s Association, 5.4 million Americans are living with Alzheimer’s today. It’s the sixth leading cause of death in the U.S. By 2050, that number of people with Alzheimer’s in the United States is expected to nearly triple to 16 million. The cost of caring for all those people is estimated to top $1 trillion dollars each year.

Which is why early detection is so key.

Several studies released at the convention pointed to the effectiveness of gait measurement as a predictor for dementia.

Falling has already been identified as one of the early indicator’s of Alzheimer’s, but several new studies show that how we walk may also be an early sign for a decline in cognitive function. 

Three studies, presented at the conference, surveyed more than 1,000 people each – the largest of their kind – and all found that slower and irregular gait was associated with some cognitive impairment.

But many researchers, including neurologist, Dr. Lisa Silbert, of the Oregon Health and Science University in Portland, Oregon, warned it wasn’t a diagnosis.

“Some degree of motor slowing is also likely a part of the aging process.”

Dr. Rodolfo Savica, of the Mayo Clinic Study of Aging, was the lead author of one the large gait studies.  His team of researchers measured gait and stride in more 1,400 participants, including those who were cognitively normal as well as those diagnosed with mild cognitive impairment and dementia.

Participants had their gait measured at least twice at 15 month intervals. Overall, those people who demonstrated slower and more irregular gaits over time demonstrated some cognitive decline.

And gait changes may not only be an indicator – but a predictor. According to Savica: “In our study we were seeing that some people were getting gait changes, before any other cognitive decline.”

Savica cautions that “the studies are still preliminary,” but he's also optimistic about the use of gait measurements as a tool.

Snyder agrees, telling CNN: “It’s a cheap and inexpensive way that we can monitor how a person maybe changing and identifying a person who can go for further evaluation. It’s not a diagnostic, but it’s something a doctor can do anywhere, just by watching someone watching walk and see any changes.”



 

Myths of Women's Weight Training and Female Bodybuilding

Women Bodybuilding Myths

From Hugo Rivera, former About.com Guide


The myths about women's weight training and female bodybuilding do not ever seem to go away. With this article, I'd like to share the facts regarding weight training and female bodybuilding. 


Women's Weight Training Myth #1 -Weight training makes you bulky and masculine.
Due to the fact that women do not, and cannot, naturally produce as much testosterone (one of the main hormones responsible for increasing muscle size) as males do, it is impossible for a woman to gain huge amounts of muscle mass by merely touching some weights. Unfortunately, the image that may come to your mind is that of professional female bodybuilders. Most of these women, unfortunately, use anabolic steroids (synthetic testosterone) along with other drugs in order to achieve that high degree of muscularity. In addition, most also have good genetics coupled with an unbelievable work ethic that enable them to gain muscle quickly when they spend hours in the gym lifting very heavy weights. Believe me when I say that they do not look like that by accident. Women who conduct weight training without the use of steroids get the firm and fit cellulite-free looking body that you see in most fitness/figure shows these days.
 

Women's Weight Training Myth #2 - Exercise increases your chest size.
Sorry girls. Women’s breasts are composed mostly of fatty tissue. Therefore, it is impossible to increase breast size through weight training. As a matter of fact, if you go below 12 percent body fat, your breast size will decrease. Weight training does increase the size of the back, so this misconception probably comes from confusing an increase in back size with an increase in cup size. The only way to increase your breast size is by gaining fat or getting breast implants.
 

Women's Weight Training Myth #3 - Weight training makes you stiff and musclebound.
If you perform all exercises through their full range of motion, flexibility will increase. Exercises like flyes, stiff-legged deadlifts, dumbbell presses, and chin-ups stretch the muscle in the bottom range of the movement. Therefore, by performing these exercises correctly, your stretching capabilities will increase.
 

Women's Weight Training Myth #4 - If you stop weight training your muscles turn into fat.
This is like saying that gold can turn into brass. Muscle and fat are two totally different types of tissue. What happens many times is that when people decide to go off their weight training programs they start losing muscle due to inactivity (use it or lose it) and they also usually drop the diet as well. Therefore bad eating habits combined with the fact that their metabolism is lower due to inactivity, and lower degrees of muscle mass, give the impression that the subject’s muscle is being turned into fat while in reality what is happening is that muscle is being lost and fat is being accumulated.
 

Women's Weight Training Myth #5 - Weight training turns fat into muscle.
More alchemy. This is the equivalent of saying that you can turn any metal into gold; don't we wish! The way a body transformation occurs is by gaining muscle through
 weight training and losing fat through aerobics and diet simultaneously. Again, muscle and fat are very different types of tissue. We cannot turn one into the other.

Women's Weight Training Myth #6 - As long as you exercise you can eat anything that you want.
How I wish this were true also! However, this could not be further from the truth. Our individual metabolism determines how many calories we burn at rest and while we exercise. If we eat more calories than we burn on a consistent basis, our bodies will accumulate these extra calories as fat regardless of the amount of exercise that we do. This myth may have been created by people with such high metabolic rates(hardgainers)
 that no matter how much they eat or what they eat, they rarely meet or exceed the amount of calories that they burn in one day unless they put their mind to doing so. Therefore, their weight either remains stable or goes down. If you are confused about nutrition, please read Nutrition Basics. 

Women's Weight Training Myth #7 - Women only need to do cardio and if they decide to lift weights, they should be very light.
First of all, if you only did cardio then muscle and fat would be burned for fuel. One needs to do weights in order to get the muscle building machine going and thus prevent any loss of muscle tissue. Women that only concentrate on cardio will have a very hard time achieving the look that they want. As far as the lifting of very light weights, this is just more nonsense. Muscle responds to resistance and if the resistance is too light, then there will be no reason for the body to change.
 

Women Should Train Hard
I have trained with girls that train as hard as I do and they look nothing but feminine. If you want to look great, don't be afraid to pick up the weights and lift hard!
 

About The Author
 

Hugo Rivera, About.com's Bodybuilding Guide and ISSA Certified Fitness Trainer, is a nationally-known best-selling author of over 8 books on bodybuilding, weight loss and fitness, including "The Body Sculpting Bible for Men", "The Body Sculpting Bible for Women", "The Hardgainer's Bodybuilding Handbook", and his successful, self published e-book, "Body Re-Engineering". Hugo is also a national level NPC natural bodybuilding champion. Learn more about
 Hugo Rivera.



 

The Slow Lifts 2: The Squat

By Mark Rippetoe

In Powerlifting

April 01, 2006

 

In Part 2 of his series on the slow lifts, Mark Rippetoe calls the squat the key to strength and conditioning because no other exercise changes so many things about the body in so short a time.

The squat is the way that tens of millions of years of evolution has adapted the bipedal human body to lower itself to the ground. When done weighted, it is the best exercise in existence for strength, power, coordination, joint integrity, bone density, confidence, discipline, intelligence, and charm.

Squats produce bigger muscles, better nervous control over those bigger muscles, denser bones, tougher tendons and ligaments, the cardiac and pulmonary capacity required to function under the circumstances of loaded squatting -- and the psychological skills necessary to do them.

It is easy to squat correctly if you know before you squat with the bar exactly where you are going to be when you get to the bottom. This is accomplished by assuming the desired bottom position before the bar is taken out of the rack. This way, the motor skills involved in identifying the bottom position—its balance, its proper depth, and its foot, knee, hip, back, and chest positions—can be embedded before the factor of bar load is added.

When you’re ready, take the bar out of the rack (stepping back please, so that you walk forward when putting it up). Take the same stance you prepared, look down a bit, think about keeping your knees out, take a big breath and hold it, and squat all the way down. . There is a lot here to consider, and this is just the beginning. That’s why my book Starting Strength devotes 52 pages to the squat. Learn to do it correctly, dammit. We need you strong.



 

Great Abs Are Made In The Kitchen Not In The Gym

There is an old bodybuilding adage that states, “Great abs are made in the kitchen, not in the gym”.  It’s a catchy little saying and when I say it, most people pause and then say, “Oh, I get it!" After all, it’s a really simple concept.  But adages just like clichés become what they are because of the truths they contain.  Another way of conveying this truth is “you can’t out exercise a bad diet”. Consider this common example: Julie is a woman of average height and weight that goes to the gym with her friends. Feeling strong one day, she decides to push it on the treadmill at 6 mph for an entire hour. One sweaty hard worked hour later she looks down and the treadmill reads “Calories Burned: 661”. “Sweeeet!” she says.  Feeling fantastic, Julie and her friends decide to grab a bite to eat and hang out for a bit before heading home. They decide to go to their favorite local deli and get something “light” since they are in that healthy frame of mind. Julie orders her favorite bagel with light cream cheese and a 16-ounce fruit smoothie.

Riding on her exercise high, Julie enjoys her bagel and smoothie while visiting with her friends. As their lunch is winding down and realizing they still have a lot to do that day, the girls decide to grab a quick “pick-me-up” to head into the second half of the day. It’s hot outside so Julie orders her favorite ice-blended coffee drink and heads home.  Entering her house, she tosses her keys on the counter, drops her empty coffee cup into the recycling bin and heads into the shower. And this is where we need to press pause in our little story. Something has happened. Little does she know it, but Julie has already consumed more calories in that quick trip to the deli and coffee shop than she burned in that sweaty one-hour workout at the gym! That is how quickly it happens.

  • Bagel: 320 calories 
  • Light Cream Cheese: 100 calories
  • Fruit Smoothie: 240 calories
  • Blended Mocha: 280 calories
  • Total Calories: 940

And you can add another 100-200 calories to that total if she chugged down a sports drink while exercising. It’s a difficult thing to digest (pun intended) but it’s a vital thing to truly understand if we are going to educate ourselves on the process of shedding unwanted pounds.

Along with the above example, there is something of equal importance to understand when it comes to getting those ripped 6-pack abs. YOU ALREADY HAVE THEM! We all do, anatomically speaking. It’s just a matter of making them visible. As evidence to this, just spend a little time at your local municipal pool and you will see droves of kids walking around with perfect 6-pack abs who have never done a crunch in their life! So often in training sessions you will hear a person say, while clutching a piece of their belly fat, “Can we do a lot of abs today, because I gotta get rid of this”.  This is a misnomer, though common to all trainers, which has persisted in the public eye for years.

The majority of the reason for this is that whenever we are shown someone in a fitness magazine or TV spot discussing how to get those ripped abs, they are typically doing some sort of abdominal exercise or using some type of equipment they want to sell you. The marketing process is simple. Show someone with great abs using a product and the consumer ties the image of great abs to the use of that product. And it works. The sales of ab equipment is a multi-million dollar business. But the truth lies in your refrigerator.

This certainly isn’t meant to devalue the benefits of abdominal or core training but let’s be honest here. The overwhelming majority of people busting their butts doing hundreds of crunches are doing them primarily for aesthetic purposes. Heck, I’d bet looking better is a close second only to health for the main reason most people work out at all, and in an honest survey it may be #1! Although this may hint that our priorities are slightly out of line, the fact is, when we look better we feel better and our health is likely to follow.

In my next article, we are going to take a closer look at how we can make changes in our daily routine to effect change in our dietary habits. After all, like most things in our life, for better or worse, they are done out of habit. But we must first understand that when it comes to 6-pack abs or getting that bikini-ready tummy, it’s what you do in the kitchen that matters most. So the next time you’re reaching for the phone to order that fancy piece of exercise equipment, while eating a box of Bon Bons, press pause in your little story and remember that great abs are made in the kitchen and NOT in the gym.

By Harold Lasley

 



 

The Most Useless Exercise Ever

by Bari Lieberman August 25, 2011, 07:00 am EDT

If you want to scream any time you see an ad for some ab exercise contraption that’ll “guarantee a flat stomach!”—we feel you. Does anyone still believe crunches help burn belly fat? (If so, they’re an idiot.)

Here’s more evidence: A recent study published in the Journal of Strength and Conditioning Research found that simply performing sit-ups, crunches, and other ab exercises won’t do much (correction: anything) to reduce belly fat.

One group of study subjects performed ab exercises 5 days a week while the control group did nothing. At the end of 6 weeks, there was no significant change in stomach fat in either group. Everyone was told not to change their diet.

In short: Ab exercises didn’t flatten people’s stomachs. In fact, they were just as effective as doing absolutely jack.

So if you want flat abs, what should you do? It’s not as simple as plodding on the treadmill for 20 minutes a day: New research reveals some types of exercise burn more fat than your local steakhouse—while others only burn up your time.

Fat-Loss Myths

It’ll take you 250,000 crunches to burn a pound of fat. Now that’s a situation, and not the kind you’ll find at the Jersey Shore.

“Aerobic activity must be a part of the exercise prescription. Crunches and such are great to increase abdominal and core strength, but just performing these alone will not increase caloric expenditure above that which is needed to facilitate sizeable fat loss,” says study researcher John Smith, PhD., HFS, an assistant professor at Texas A&M University-San Antonio.

Steady-state aerobic exercise alone isn’t particularly great for weight loss, either. One study published in Obesity found that after a year of hourlong cardio sessions for 6 days per week, people only lost 3.5 pounds. (The study asked participants to leave their diets unchanged.)

“Research has shown over and over that steady-state aerobic exercise alone has a minimal effect on fat loss,” says Jeff Halevy, NYC-based celebrity trainer & CEO of Halevy Life. “With all due respect, because I do truly respect their accomplishments, how many recreational marathoners and half-marathoners cross the finish line with a little belly in tow? Looking at the typical finish line, plenty of them.”

Go Fast to Blast Fat
You’ve heard a million times that you can’t spot-train fat. And while that’s true in terms of, say, crunching for flat abs, research shows that certain modes of training affect overall fat loss more than others.

One of them: High-intensity training. A study out of the Department of Kinesiology at McMaster University found that men who performed sprint interval training for a total of 2.5 hours (including recovery) over the course of 2 weeks has the same results as the group who performed endurance training for a total of 10.5 hours over the same time period.

More evidence: A study of 15 women found that high-intensity exercise (40 to 45 minutes approximately four times weekly at a mean HR of 163 bpm) reduced body fat by about 5 percent over the course of 15 weeks versus a virtually unchanged percentage in the group that performed exercise at a lower heart rate (132 beats per minute).

The Power Combo for Fat Loss: Strength Plus Cardio
Combining strength training with aerobic exercise leads to greater fat loss than aerobic exercise alone, research shows. A recent study found that obese adolescents who participated in a 30-minute aerobic plus 30-minute strength-training workout three times per week lost nearly four times more fat than those who just did hourlong aerobic training at a similar intensity. There was about a 3 percent fat loss in the cardio-only group, and 11.5 percent fat loss in the cardio-and-strength group over 1 year.

In another study, this time from Penn State University, dieters all lost about 21 pounds. But the group who performed strength and cardio shed about 6 more pounds of fat than groups who didn’t exercise or who only did aerobics. The reason: The other groups shed muscle, too.

“Proper diet and cardio alone will make you weigh less, but that weight loss isn’t fat alone—you’re losing muscle, too, and not building anything to give your body athletic shape,” Halevy says. “But if you’re after fat loss, aside from accelerating it, strength training will also preserve muscle. This means when the fat is gone, you’ll have a lean, athletic body to show for it.”

Resistance training has a big effect on post-workout caloric burn, which may help explain why it’s so essential to fat loss. A study published in The Journal of Strength and Conditioning Researchfound that high-volume resistance training increased resting energy expenditure (REE) by about 8 percent for up to 72 hours post workout.

The bottom line: Ab exercises make your abs look great—once that layer of fat on top of them is gone. But working your abs isn’t the best way to a flat belly, and crunches aren’t even the best way to work your abs!



Alzheimer's Association International Conference (AAIC) 2012. Abstracts F1-03-01, FI-03-02, P1-109, and P1-121. All presented July 15, 2012.

From Medscape Medical News > Psychiatry

Weight Training, Walking Improve Cognition in the Elderly

Never Too Late to Exercise, Researchers Say

Deborah Brauser

Authors and Disclosures

 

July 15, 2012 (Vancouver, British Columbia) — Physical activity, including resistance training and walking, can increase cognitive functioning in various types of elderly adults, including those diagnosed with mild cognitive impairment (MCI), according to 4 new randomized trials presented at the Alzheimer's Association International Conference (AAIC) 2012.

In the first study, which included elderly women with MCI, those randomly assigned to undergo resistance training/weight lifting sessions for 6 months had significant improvements in attention, conflict resolution, and associative memory scores. They also showed functional improvements in memory brain regions compared with their peers who underwent balance and tone (BT) exercises.

In addition, the women randomly assigned to undergo aerobic training/walking programs showed significantly more improved verbal memory scores and improved physiological functioning than did the women in the BT group.

"MCI is a critical window of opportunity in which we may be able to intervene before the onset of dementia," lead author Lindsay Nagamatsu, a doctoral candidate from the University of British Columbia, Vancouver, Canada, said during her presentation to attendees.

 

A second study showed that elderly women who were considered "higher functioning" at baseline had higher improvement and maintenance scores on cognitive tests after undergoing resistance training than those who received BT training."Both resistance training and aerobic training have benefits and improve different types of memory. But perhaps a higher dose of aerobic training is required to impact executive functioning and functional plasticity," Nagamatsu told Medscape Medical News following her presentation.

The third study showed that both men and women with amnestic MCI demonstrated significant improvements in language scores after completing a combination exercise program vs a health education program. And study 4 showed that moderate walking by older people without dementia actually increased growth in memory brain regions as well as increased levels of brain-derived neurotrophic factor (BDNF)

"We've been convinced for a number of years that there is a positive relationship between increased physical activity and cognitive function. And the strength of that data continues to increase," William Thies, PhD, chief medical and scientific officer of the Alzheimer's Association, told Medscape Medical News.


Resistance Training Benefits
"I'm really happy to see resistance training turning up in the cognitive literature. Like with all of the exercise data, it makes it perfectly clear that physical activity is good for you in many ways — and almost certainly is good for your cognitive function," said Dr. Thies, who was not involved with any of the studies.

Nagamatsu and colleagues enrolled 86 women between the ages of 70 and 80 years (mean age, 74.9 years) with probable MCI into the Exercise for Cognition and Everyday Living (otherwise known as EXCEL) study. The participants were randomly assigned to receive twice-weekly sessions of either resistance training (n = 28), aerobic training (n = 30), or BT training (n = 28) for 24 weeks.

Resistance training was aimed at improving muscle strength and consisted of the use of free weights and a Keiser Pressurized Air System. Aerobic training was aimed at improving cardiovascular health and included an outdoor walking program. The BT group (control group) underwent sessions that included stretching, relaxation, and range of motion exercises.

"Looking at resistance training was important because it reaches a larger proportion of the population. Some seniors aren't able to get up and go outside for a run, or they have mobility issues. But they might be able to lift some free weights in their living room," said Nagamatsu.

The primary outcome measure was selective attention and conflict resolution, as assessed by a Stroop word test. Secondary measures included verbal memory, as assessed with Rey's Auditory Verbal Learning Test (RAVLT); associative memory; and functional magnetic resonance imaging (fMRI) scans to assess functional plasticity.

Results showed that the women who underwent resistance training had significantly higher scores on the Stroop test compared with those who underwent BT training (17% vs 2.4% improvement, respectively; P = .04). Compared with the BT group, the aerobic training group did not show significantly improved Stroop scores.

Associative memory scores were also only significantly better in those undergoing resistance training (< .03).

However, RAVLT memory scores were significantly higher in the aerobic training group vs the BT group. These women also had significant improvements in balance and in cardiovascular capacity.

The fMRIs showed no significant between-group differences in activation for item memory, but the resistance training group showed increased activation in 3 brain regions during associative memory tasks: the right lingual gyrus, the right frontal pole, and the occipital fusiform gyrus.

"Both exercise groups improved their memory scores, but on different types of memory. More research is needed to determine their differential effects," said Nagamatsu.

"Overall, exercise appears to be an effective intervention for delaying the onset of dementia in seniors who are already showing signs of decline. Although it's probably a combination of both types that make for the most effective strategy, really any type of exercise is important for seniors to be doing."

Baseline Status Key

In a second study, lead author Nader Fallah, PhD, also from the University of British Columbia, and colleagues found that higher functioning elderly women randomly assigned to undergo resistance training for 12 months had a higher probability of improving and maintaining cognitive test scores than those randomly assigned to BT training.

Although test scores between the 2 exercise groups did not differ significantly for the lower functioning women, there was an overall higher probability of cognitive decline and lower probability for improved performance on the Stroop test in the full group receiving BT training.

"To our knowledge, this is the first study to demonstrate that an individual's baseline self-regulatory capacity impacts the amount of cognitive benefit the person will reap from targeted exercise training," said Dr. Fallah in a release.

"We demonstrated that the probability of improving selective attention and conflict resolution in older adults is most evident among those with higher baseline cognitive status — which is different from the current general opinion," added principal investigator Teresa Liu-Ambrose, PhD, from the University of British Columbia and the Vancouver Coastal Health Research Institute, in the same release.

Linear Decline After 30

The third study was presented by Hiroyuki Shimada, PhD, and colleagues from the National Center for Geriatrics and Gerontology in Obu, Aichi, Japan.

Its results showed that men and women between the ages of 65 and 93 years with memory-related MCI who were randomly assigned to a program consisting of aerobic exercise, muscle strength training, and postural balance retraining (n = 25) for a year showed improved scores on the Wechsler Memory Scale and a "significant interaction effect for letter fluency" vs those who participated only in healthy education programs (n = 25).

"In other words, the ability to use language of the multicomponent exercise group improved significantly," said Dr. Shimada in a release.

The fourth study looked at 120 older adults without dementia who had been sedentary for the previous 6 months. The participants were randomly assigned to undergo either a walking program of moderate intensity or stretching and toning exercises for a year.

MRIs were used to measure the hippocampus at baseline and at the end of the exercise programs. In addition, blood samples were gathered to determine BDNF levels, and cognitive tests were given.

"A decline in cognition is preceded by changes in the brain. And we usually see a linear decline starting at about the age of 30," lead author Kirk Erickson, PhD, from the Department of Psychology at the University of Pittsburgh, Pennsylvania, told meeting attendees.

"We wanted to see if it is possible to develop methods to prevent or even reverse the course of this atrophy."

"Striking Effect"

Results showed that those in the walking group had a 2% increase in their hippocampus compared with a 1.5% decrease in the stretching and toning group.

"What's really striking to me about this pattern is that no other treatment, including pharmaceutical treatments, has been able to show this same kind of effect. Getting out and walking is enough to do something that pharmaceutical treatments haven't done," said Dr. Erickson.

"In addition, higher cardiorespiratory fitness was associated with greater volume of the prefrontal cortex, which mediated the link between fitness and cognitive performance," write the study authors.

Dr. Erickson noted that the overall message is that even moderate exercise has widespread effects on the brain.

"Starting to exercise later in life is not futile. Even those who are sedentary can improve brain function. There is no excuse to say, 'I haven't exercised before in my life, so why should I start now?' "

Dr. Thies called the results "convincing."

"For all of these studies, I think if you're at all concerned about cognitive function in the future, you really ought to figure out a way to build physical activity into your life."

Study 1 was funded by the Pacific Alzheimer's Research Foundation. Study 2 was funded by the Vancouver Foundation and by the Michael Smith Foundation for Health Research. Study 3 was funded by the Japanese Ministry of Health, Labor, and Welfare and by the Japanese Ministry of Education and Culture. Study 4 was funded by the National Institute on Aging. All study authors and Dr. Thies have disclosed no relevant financial relationships.



Phys Ed: Does Exercise Reduce Your Cancer Risk?

By GRETCHEN REYNOLDS

New York Times

AUGUST 18, 2009, 11:59 PM

Finnish researchers recently concluded that, if you wish to ward off lung or gastrointestinal cancer, you might want to spend your leisure time jogging instead of picking berries, mushroom gathering or fishing. In the study, published in late July on the Web site of the British Journal of Sports Medicine, scientists studied the health of a group of 2,560 middle-aged Finns over the course of about 17 years. The subjects, all men living in eastern Finland, kept diaries of their daily activities for a year and then went about them.

 

At the start of the study, none had cancer. By the end, 181 had died of the disease. Parsing the men’s activity levels, the researchers determined that, after controlling for cigarette smoking, fiber and fat intake, age, and other variables, the most physically active men were the least likely to develop cancer, particularly of the gastrointestinal tract or the lung. Even more striking, the intensity of the exercise was key. The more arduous it was, the more protective it proved. Jogging was the most strenuous activity studied, fishing among the least. The men who jogged or otherwise exercised fairly intensely for at least 30 minutes a day had “a 50 percent reduction in the risk of dying prematurely from cancer,” says Sudhir Kurl, medical director of the School of Public Health and Clinical Nutrition at the University of Kuopio in Finland and one of the study’s authors.

It seems fair and just that conscientiously working out should confer disease-fighting benefits, especially against cancer, and an accreting body of research suggests that under certain conditions and against certain forms of cancer, fitness may be remarkably protective. A major review article published in February on the Web site of the British Journal of Cancer synthesized the results of more than two decades’ worth of studies and concluded that the most active people are 24 percent less likely to develop colon cancer than sedentary people are, regardless of their diets, smoking habits or body weight. Another study, this one presented in May at the annual meeting of the American College of Sports Medicine reported that women over age 30 who defined themselves as “highly competitive” by disposition and who exercised more than the average for the group had much less risk of developing breast cancer than women who worked out for less than 60 minutes per week.

RELATED

What these recent studies, including the one from Finland, share is the suggestion that, in order to use exercise to reduce the risk of cancer, you must make yourself sweat. In the Finnish study, the most beneficial exercise was both frequent and demanding. The researchers used METs (an acronym for metabolic equivalent of task, a numerical comparison of the oxygen or energy used during an activity versus the amount used at rest) to characterize their subjects’ exercise habits. A MET of 1 is the equivalent of lolling inertly on the couch. In his study, jogging steadily for 30 minutes or so represented a MET of about 10. The men whose METs reached at least 5 almost every day were the least likely to die of cancer, especially of the lung or the gastrointestinal tract. Similarly, in one of the studies included in the colon cancer review, women who walked briskly for five to six hours a week were much less likely to develop colon cancer than those who strolled for 30 minutes per week. And in the bogglingly comprehensive 2008 national Physical Activity Guidelines Advisory Committee report prepared for the secretary of health and human services, which includes a chapter about exercise and cancer, the authors concluded that when it comes to breast cancer, “one hour per day of moderate or vigorous activity produces greater reduction in risk” than the two and a half hours of moderate exercise per week that are currently recommended by the surgeon general.

The Finnish researchers admit that, like other scientists studying activity and cancer, they don’t know just how or why brisk exercise affects risk or why only some types of cancer are affected. Exercise long has been known to speed the emptying of the colon, which may reduce the amount of time that carcinogens linger in the organ, the Finnish scientists point out. Strenuous exercise also affects the production of sex hormones in men and women, and — particularly in the case of estrogen and breast cancer — may by that mechanism reduce cancer formation. Other scientists have posited that the panting involved in strenuous exercise might rapidly move carcinogens out of the lungs. Still other researchers have written that alterations in how a well-trained body handles insulin and some cellular growth factors could lessen the chances of tumors developing.

But it remains difficult to tease out the specific molecular effects of regular, brisk exercise from the generally healthy habits of exercisers. Although the Finnish study controlled for diet, the scientists write that other, unspecified “lifestyle factors” and the luck (good and bad) of genetics may well have affected their results. Still, their findings offer a prescription for potentially reducing your risk of certain cancers that has few obvious, undesirable side effects, except among the intractably lazy. “At least moderately intense physical activity is more beneficial than low intensity physical activity in the prevention of cancer,” the authors conclude. The takeaway, in other words, is that jogging trumps berry picking.



   AHA Science Advisory

Resistance Exercise in Individuals With and Without Cardiovascular Disease

Benefits, Rationale, Safety, and Prescription An Advisory From the Committee on Exercise, Rehabilitation, and Prevention, Council on Clinical Cardiology, American Heart Association

1.       Michael L. Pollock, PhD1

2.       Barry A. Franklin, PhD; 

3.       Gary J. Balady, MD;

4.       Bernard L. Chaitman, MD; 

5.       Jerome L. Fleg, MD; 

6.       Barbara Fletcher, MN, RN;

7.       Marian Limacher, MD; 

8.       Ileana L. Piña, MD; 

9.       Richard A. Stein, MD;

10.   Mark Williams, PhD; 

11.   Terry Bazzarre, PhD

Position paper endorsed by the American College of Sports Medicine

Although exercise programs have traditionally emphasized dynamic lower-extremity exercise, research increasingly suggests that complementary resistance training, when appropriately prescribed and supervised, has favorable effects on muscular strength and endurance, cardiovascular function, metabolism, coronary risk factors, and psychosocial well-being. This advisory reviews the role of resistance training in persons with and without cardiovascular disease, with specific reference to health and fitness benefits, rationale, the complementary role of stretching, relevant physiological considerations, and safety. Participation criteria and prescriptive guidelines are also provided.

Health and Fitness Benefits of Resistance Training

Although resistance training has long been accepted as a means for developing and maintaining muscular strength, endurance, power, and muscle mass (hypertrophy),1 2 its beneficial relationship to health factors and chronic disease has been recognized only recently.3 4 5 Prior to 1990, resistance training was not a part of the recommended guidelines for exercise training and rehabilitation for either the American Heart Association or the American College of Sports Medicine (ACSM). In 1990, the ACSM first recognized resistance training as a significant component of a comprehensive fitness program for healthy adults of all ages.6

Both aerobic endurance exercise and resistance training can promote substantial benefits in physical fitness and health-related factors.3 5 

Table 1 summarizes these benefits and attempts to weigh them according to the current literature.3Although both training modalities elicit benefits in most of the variables listed, the estimated weightings (ie, in terms of physiological benefits) are often substantially different. Aerobic endurance training weighs higher in the development of maximum oxygen uptake (V̇O2max) and associated cardiopulmonary variables, and it more effectively modifies cardiovascular risk factors associated with the development of coronary artery disease. Resistance training offers greater development of muscular strength, endurance, and mass. It also assists in the maintenance of basal metabolic rate (to complement aerobic training for weight control), promotes independence, and helps to prevent falls in the elderly.5 7 Resistance training is particularly beneficial for improving the function of most cardiac, frail, and elderly patients, who benefit substantially from both upper- and lower-body exercise.3 4

Resistance Exercise in Individuals With and Without Cardiovascular Disease

Table 1.

Comparison of Effects of Aerobic Endurance Training With Strength Training on Health and Fitness Variables

Variable

Aerobic Exercise

Resistance Exercise

Bone mineral density

↑↑

↑↑

Body composition

   

% Fat

↓↓

LBM

↑↑

Strength

↑↑↑

Glucose metabolism

   

Insulin response to glucose challenge

↓↓

↓↓

Basal insulin levels

Insulin sensitivity

↑↑

↑↑

Serum lipids

   

HDL

↑↔

↑↔

LDL

↓↔

↓↔

Resting heart rate

↓↓

Stroke volume, resting and maximal

↑↑

Blood pressure at rest

   

Systolic

↓↔

Diastolic

↓↔

↓↔

O2max

↑↑↑

↑↔

Submaximal and maximal endurance time

↑↑↑

↑↑

Basal metabolism

↑↑

  • ↑ indicates values increase; ↓, values decrease; ↔, values remain unchanged; ↑ or ↓, small effect; ↑↑ or ↓↓, medium effect; ↑↑↑ or ↓↓↓, large effect; LBM, lean body mass; HDL, high-density lipoprotein cholesterol; and LDL, low-density lipoprotein cholesterol. Adapted with permission from Pollock and Vincent.3

Although the mechanisms for improvement may be different, both aerobic endurance exercise and resistance training appear to have similar effects on bone mineral density, glucose tolerance, and insulin sensitivity.3 For weight control, aerobic exercise is considered a significant calorie burner, whereas resistance training assists the body in expending calories via an increase in lean body mass and basal metabolism. Thus, resistance training exercise is strongly recommended for implementation in primary and secondary cardiovascular disease–prevention programs.

Many cardiac patients and middle-aged persons develop chronic diseases that can be favorably affected by resistance training. Moreover, resistance training can be beneficial in the prevention and management of other chronic conditions, eg, low back pain, osteoporosis, obesity and weight control, sarcopenia (ie, a loss of skeletal muscle mass that may accompany aging), diabetes mellitus, susceptibility to falls, and impaired physical function in frail and elderly persons, as well as in the prevention of and rehabilitation from orthopedic injuries.3 Consequently, most professional and government health associations or agencies now support the inclusion of resistance training in their current recommendations and guidelines (see Table 2).8 9 10 11 12 13

Resistance Exercise in Individuals With and Without Cardiovascular Disease

Table 2.

Standards, Guidelines, and Position Statements Regarding Strength Training

 

Sets; Reps

Stations/Devices

Frequency

Healthy/sedentary adults

     

2000 ACSM Guidelines8

1 set; 8–15 reps

8–10 exercises1

2 days per week, minimum

1998 ACSM Position Stand

1 set; 8–12 reps for persons under 50–60 y, 10–15 reps for persons ≥50–60 y

8–10 exercises

2–3 days per week

1995 CDC/ACSM Statement10

Addressed, not specified

   

1996 Surgeon General’s Report5

1–2 sets; 8–12 reps

8–10 exercises

2 days per week, minimum

Elderly persons

     

Pollock et al11

1 set; 10–15 reps

8–10 exercises

2 days per week, minimum

Cardiac patients

     

1995 AHA exercise standards12

1 set; 10–15 reps

8–10 exercises

2–3 days per week

1999 AACVPR guidelines

1 set; 12–15 reps

8–10 exercises

2–3 days per week

  • ACSM indicates American College of Sports Medicine; AHA, American Heart Association; CDC, Centers for Disease Control and Prevention; AACVPR, American Association of Cardiovascular and Pulmonary Rehabilitation; and reps, repetitions.
  • Minimum 1 exercise per major muscle group: eg, chest press, shoulder press, triceps extension, biceps curl, pull-down (upper back), lower-back extension, abdominal crunch/curl-up, quadriceps extension or leg press, leg curls (hamstrings), calf raise.

 

 

 

Rationale for Resistance Training

The rationale to support resistance training as an adjunct to an adult fitness or exercise-based cardiac rehabilitation program stems from several lines of evidence. Moderate-to-high-intensity resistance training performed 2 to 3 days per week for 3 to 6 months improves muscular strength and endurance in men and women of all ages by 25% to 100%, depending on the training stimulus and initial level of strength.14 Furthermore, many leisure and occupational tasks require static or dynamic efforts, often involving the arms rather than the legs.15 Because the pressor response to resistance exercise is largely proportionate to the percent of maximal voluntary contraction (% MVC),16 as well as the muscle mass involved,17 increased muscle strength results in an attenuated heart rate and blood pressure response to any given load, because the load now represents a lower percentage of the MVC.18

Strength training increases muscular endurance, with modest to no improvement in V̇O2max.19 In subjects in that study, although V̇O2max during treadmill and cycle ergometer testing remained essentially unchanged after 10 weeks of heavy resistance training, submaximal endurance time to exhaustion increased while cycling (47%) and running (12%). Similarly, Ades et al20 reported that 12 weeks of strength training improved submaximal walking time by 38%. These findings suggest that improved endurance is not a function of aerobic exercise alone but can be significantly enhanced by increased muscular strength.

 

Complementary Role of Stretching

In contrast to resistance training, stretching as an isolated activity increases neither muscle strength or endurance, but it should be incorporated into an overall fitness regimen. Considerable evidence suggests that stretching exercises increase tendon flexibility, improve joint range of motion (ROM) and function, and enhance muscular performance.9 Moreover, observational studies support the role of flexibility exercise using ballistic (movement), static (little or no movement), or modified proprioceptive neuromuscular facilitation techniques9 in the prevention and treatment of musculoskeletal injuries.21 These promote a transient increase in the musculotendon unit length that results from actin-myosin complex relaxation and a lasting increase through alteration in the surrounding extracellular matrix. Thus, aerobic and/or resistance training should be complemented by a stretching program that exercises the major muscle or tendon groups at least 2 to 3 days per week.9

 

Physiological Considerations

The physiological response to dynamic aerobic exercise is an increase in oxygen consumption and heart rate that parallels the intensity of the imposed activity and a curvilinear increase in stroke volume. There is a progressive increase in systolic blood pressure, with maintenance of or a slight decrease in the diastolic blood pressure, and a concomitant widening of the pulse pressure. Blood is shunted from the viscera to active skeletal muscle, where increased oxygen extraction widens the systemic arteriovenous oxygen difference. Thus, aerobic exercise imposes primarily a volume load on the myocardium.16

Isometric exertion involves sustained muscle contraction against an immovable load or resistance with no change in length of the involved muscle group or joint motion. The heart rate and blood pressure responses to isometric exertion are largely proportionate to the tension exerted relative to the greatest possible tension in the muscle group (% MVC) rather than the absolute tension developed.16Stroke volume remains largely unchanged except at high levels of tension (>50% MVC), at which it may decrease. The result is a moderate increase in cardiac output, with little or no increase in metabolism. Despite the increased cardiac output, blood flow to the noncontracting muscles does not significantly increase, probably because of reflex vasoconstriction. The combination of vasoconstriction and increased cardiac output causes a disproportionate rise in systolic, diastolic, and mean blood pressures.16 Thus, a significant pressure load is imposed on the heart, presumably to increase perfusion to the active (contracting) skeletal muscle.

Although isometric or combined isometric and dynamic (resistance) exercise has traditionally been discouraged in patients with coronary disease, it appears that resistance exercise (eg, weight lifting at 8 to 12 repetitions/set) is less hazardous than was once presumed, particularly in patients with good aerobic fitness and normal or near-normal left ventricular (LV) systolic function. Isometric exertion, regardless of the % MVC, generally fails to elicit angina pectoris, ischemic ST-segment depression, or threatening ventricular arrhythmias among selected (low-risk) cardiac patients.22 The rate-pressure product is lower during maximal isometric and dynamic resistance exercise than during maximal aerobic exercise, primarily because of a lower peak heart rate response. Increased subendocardial perfusion secondary to elevated diastolic blood pressure and decreased venous return, LV diastolic volume, and wall tension may also contribute to the lower incidence of ischemic responses during resistance effort.15 Furthermore, the myocardial oxygen supply/demand relationship appears to be favorably altered by the superimposition of static on dynamic effort, so that the magnitude of ST-segment depression is lessened at a given rate-pressure product.23

 

Safety of Resistance Training

The safety of resistance testing and training in moderate-to-high-risk cardiac patients requires study. However, numerous investigations in healthy adults and low-risk cardiac patients (ie, persons without resting or exercise-induced evidence of myocardial ischemia, severe LV dysfunction, or complex ventricular dysrhythmias) have reported few orthopedic complications and no cardiovascular events. Gordon et al24 reported no significant cardiovascular events after determining the maximum weight that could be used to complete 1-repetition (ie, 1-repetition maximum, 1 RM) strength testing (bench press, leg press, and knee extension) in 6653 healthy subjects aged 20 to 69 years who had undergone a preliminary medical examination and maximal treadmill testing; all had resting blood pressures ≤160/90 mm Hg. The safety of resistance training in patients with mild hypertension has also been reported.25 Moreover, Haslam et al26 found intra-arterial blood pressures during weight lifting in cardiac patients to be within a clinically acceptable range at 40% and 60% of 1 RM.

Recently, the application of resistance testing or training in the rehabilitation of patients with coronary disease in 12 different studies was reviewed.27 Resistance or circuit weight training was typically added to the physical-conditioning regimens of men with coronary disease who had already been aerobically trained, generally for 3 months or more. The latter (circuit weight training) involved the performance of upper- and lower-body resistance exercises in an alternating fashion with relatively lighter weights (40% to 60% of 1 RM), with little rest between sets (15 to 30 seconds). The duration, program length, and intensity of strength training ranged from 30 to 60 minutes, 6 to 26 weeks, and 25% to 80% of 1 RM, respectively. All studies reported improvements in muscular strength and endurance, with similar increases in overall strength for high (80% of 1 RM) and moderate (30% to 40% of 1 RM) training intensities. The absence of anginal symptoms, ischemic ST-segment depression, abnormal hemodynamics, complex ventricular dysrhythmias, and cardiovascular complications suggests that strength testing and training are safe for clinically stable men with coronary disease who are actively participating in a rehabilitative program. Unfortunately, similar data in women are lacking.

Although conventional participation guidelines have suggested that surgical and post–myocardial infarction (MI) patients should avoid resistance training for at least 4 to 6 months,28 29 many men can safely perform static-dynamic activity equivalent to carrying up to 30 pounds by 3 weeks after an acute MI.30 Thus, it is possible that resistance training could be initiated sooner, if low-weight programs are used.

 

Participation Criteria and Preliminary Instruction

Contraindications to resistance training are similar to those used for the aerobic component of adult fitness or cardiac exercise programs. Many previous strength-training studies involved small numbers of low-risk male patients with coronary disease, aged 70 years or younger, with normal or near-normal aerobic fitness and LV function. The extent to which the safety and effectiveness demonstrated by these studies can be extrapolated to other populations of coronary patients (eg, women, older patients with low aerobic fitness, and patients with severe LV dysfunction) remains unclear.27 Accordingly, these patient subsets may require more careful evaluation and initial monitoring.

Contraindications to resistance training include unstable angina, uncontrolled hypertension (systolic blood pressure ≥160 mm Hg and/or diastolic blood pressure ≥100 mm Hg), uncontrolled dysrhythmias, a recent history of congestive heart failure that has not been evaluated and effectively treated, severe stenotic or regurgitant valvular disease, and hypertrophic cardiomyopathy.8 12 15 Because patients with myocardial ischemia or poor LV function may develop wall-motion abnormalities or serious ventricular arrhythmias during resistance-training exertion,31 32 moderate to good LV function and cardiorespiratory fitness (>5 or 6 metabolic equivalents) without anginal symptoms or ischemic ST-segment depression have been suggested as additional prerequisites for participation in traditional resistance-training programs, with cardiac medications maintained as clinically indicated.15

Low-to-moderate-risk cardiac patients who wish to initiate mild to moderate resistance training should, perhaps, first participate in a traditional aerobic exercise program for a minimum of 2 to 4 weeks. These groups include patients who have undergone percutaneous transluminal coronary angioplasty.13 Although scientific data to support this recommendation are lacking, this time period permits sufficient surveillance of the patient in a supervised setting and allows the cardiorespiratory and musculoskeletal adaptations that may reduce the potential for complications to occur.

A preliminary orientation should establish appropriate weight loads and instruct the participant on proper lifting techniques, ROM for each exercise, and correct breathing patterns to avoid straining and the Valsalva maneuver. Because systolic blood pressure measurements taken by the standard cuff method immediately after resistance exercise may significantly underestimate true physiological responses,33 such measurement is usually not recommended. Alternatives include the use of cuff-occlusion techniques to obtain blood pressure values in the legs of exercising patients,15 measurement of blood pressures in an inactive arm while the patient performs resistance exercise with the other limbs, or both. The monitoring of resting and recovery blood pressures (eg, every 1 to 3 minutes) and evaluation of signs and symptoms are standard.8 12 13

 

Exercise Prescription for Resistance Training

Current research and exercise guidelines recommend the inclusion of resistance training for healthy persons of all ages and many patients with chronic diseases, including cardiovascular disease.8 12 13 Programs that include a single set of 8 to 10 different exercises (eg, chest press, shoulder press, triceps extension, biceps curl, pull-down [upper back], lower-back extension, abdominal crunch/curl-up, quadriceps extension or leg press, leg curls [hamstrings], and calf raise) that train the major muscle groups, performed 2 to 3 days per week, will elicit favorable adaptation and improvement (or maintenance thereof). Although greater frequencies of training and more sets may be used, the additional gains among those in adult fitness programs are usually small.9 34 Conversely, fewer exercises can be performed, although training the front and back of major muscle groups (eg, chest/back and biceps/triceps) is recommended. To achieve a balanced increase in both muscular strength and endurance, a repetition range of 8 to 12 is recommended for healthy participants younger than 50 to 60 years of age and 10 to 15 repetitions at a lower relative resistance for cardiac patients and healthy participants older than 50 to 60 years of age.9 The increased repetition range at a lower relative effort for older or more frail patients is designed for injury prevention. The single greatest cause of musculoskeletal injury with resistance training is a previous injury. Also, higher-intensity efforts (fewer repetitions with heavier weights) can have adverse effects on the knee (leg extension) and shoulder (rotator cuff) areas.

The principles of resistance training are similar among groups, but its application will differ according to the individual’s goals and age and the presence of chronic disease.9 13 14 Usually older, more frail individuals and cardiac patients start at a lower resistance, progress more slowly, and may limit their end point to volitional fatigue, ie, submaximal versus maximal efforts to volitional fatigue.8 12 13Although resistance or overload of any type will provide a stimulus for improvement, the higher the intensity, the greater the result.14 Therefore, body weight (calisthenics), rubber band devices, pulley weights, dumbbells or wrist weights, barbells, or weight machines can be adapted for most participants. The advantages of graduated weights and weight machines are their known resistance and ease of facilitating and titrating the progression of training. Also, weight machines may be safer than free weights for the middle-aged to older participant because of problems associated with poor vision, equilibrium and balance (falling), low-back pain, and dropping weights.9 Machines that use variable-resistance cams can also provide a full range of muscle stimulation. For patients who have joint pain or discomfort and/or have limited ROM, machines can be double pinned to restrict their ROM. This allows patients to exercise through a pain-free part of their ROM and still attain a significant training effect.9

 

Prescription for Patients Without Cardiovascular Disease

Because “lack of time” is a major reason for not exercising or for dropping out of an exercise regimen, planning a time-efficient program is imperative.35Approximately 75% of the improvement that occurs with a 3-days-per-week resistance-training program can be attained with a 2-days-per-week regimen.34Furthermore, a single set of exercises to volitional fatigue, with weight loads corresponding to ≈50±10% of 1 RM, has been found to be as effective as multiple-set programs that are prescribed in the adult fitness setting.9 34 Thus, a comprehensive resistance-training program of 8 to 10 exercises can be accomplished in 20 to 30 minutes. Participants beginning a resistance-training program may be advised to start with a minimum of 2 days per week and, if time permits, progress to 3 days per week.

The initial resistance or weight should be set at a moderate level that allows the participant to achieve the proper repetition range at a comfortably hard level (13 to 15 on the original Borg36 perceived exertion scale, the RPE [rating of perceived exertion]). The emphasis at this early stage of training is to allow time for musculoskeletal adaptation and to practice good technique, thus reducing the potential for excessive muscle soreness and injury.9 14 Each repetition of exercise should include the following: a slow, controlled movement (≈2 seconds up and 4 seconds down), one full inspiration and expiration, and no breath holding (Valsalva maneuver).

If maximal tests are available, eg, a 1 RM, then 30% to 40% of 1 RM for the upper body and 50% to 60% of 1 RM for the hips and legs can be used as the starting weight for the first exercise-training session. If a prior test is not available, start with an estimated easy-to-light weight. When the participant can comfortably lift the weight for up to 12 to 15 repetitions, resistance can be increased by 5% for the next training session. If the participant cannot complete the minimum number of repetitions (8 or 10) using good technique, the weight should be reduced. Most participants should be able to find their proper repetition range and adapt to volitional or near-volitional fatigue within 3 to 4 weeks. Because the level of fatigue (intensity) is an important factor for attaining optimal benefits and the performance of resistance exercise at a high level of fatigue has not been associated with an increased risk of precipitating cardiovascular events in healthy adults and low-risk cardiac patients,24 27 resistance training to volitional or near-volitional levels of fatigue is recommended.9 14

 

Prescription for Patients With Cardiovascular Disease

Cardiac patients require a minimum amount of resistance exercise to perform activities associated with daily living. Unfortunately, many patients lack the physical strength or confidence to perform these tasks. Only ROM exercises of both the upper and lower extremities are recommended for most cardiac inpatients. Coronary artery bypass graft (CABG) surgery patients who experience sternal movement or have postsurgical sternal wound complications would not perform these exercises. Nevertheless, significant soft tissue and bone damage of the chest wall can occur during surgery. If this area does not receive ROM exercise, adhesions may develop, and the musculature can become weaker and foreshorten. Patients will also favor the arm, shoulder, and chest areas, which may accentuate later problems of poor posture and difficulties in attaining their previous strength and full ROM. Thus, a delay in performing upper-extremity ROM exercises may result in more discomfort for the CABG surgery patient during the recovery period, and the time required to achieve full recovery may be longer.

Stretching or flexibility activities can begin as early as 24 hours after CABG or 2 days after MI. Patients are seen once a day (generally by a physical therapist, exercise physiologist, or nurse clinician) and can perform 10 to 15 repetitions to an RPE of 11 to 13 (light to somewhat hard). The ROM exercises used in the inpatient program for the surgery patient typically include shoulder flexion, abduction, and internal and external rotation; elbow flexion; hip flexion, abduction, and internal and external rotation; plantar flexion and dorsiflexion; and ankle inversion and eversion. Low-level resistance training (eg, use of elastic bands, very light hand weights, and wall pulleys) should not begin until 2 to 3 weeks after MI.13 The recommended beginning resistance exercise is with 1- to 2-lb dumbbells or wrist weights. The program consists of 8 to 10 exercises, 2 to 3 days per week, with 1 set of 10 to 15 repetitions to moderate fatigue (RPE 12 to 13, somewhat hard). Patients will progress by 1- to 2-lb increments every 1 to 3 weeks depending on signs or symptoms and adaptation to training. Once the patient completes the convalescence stage of recovery, usually 4 to 6 weeks after the event, regular barbells and/or weight machines may be included. Surgical patients should probably avoid resistance-training exercises (other than ROM) that may cause pulling on the sternum within 3 months of CABG surgery and sternotomy. Moreover, the sternum should be checked for stability by an experienced healthcare professional before resistance training is initiated for any CABG patient or at any time that symptoms of chest discomfort or clicking develop. With appropriate clearance, selected patients may proceed in their program as described for healthy older adults. The patient should start at a low weight and perform 1 set of 10 to 15 repetitions to moderate fatigue (RPE ≈13). Weight is increased slowly as a patient adapts to the program (≈2 to 5 lb/week for arms and 5 to 10 lb/week for legs). Although 10 to 15 repetitions are recommended for all patients, moderate-risk patients should exercise to an RPE of 15 (hard) or less, whereas the low-risk patient can progress to volitional fatigue after an ≈4- to 6-week adaptation period.8 13 It should be emphasized, however, that the resistance-training prescription for patients with cardiovascular disease may differ slightly depending on the degree of LV dysfunction, concomitant comorbid conditions (eg, hypertension or diabetes), and associated neurological, vascular, and orthopedic limitations. As opposed to resistance training, which combines isometric and dynamic exercise, pure isometric exercise is not recommended for patients with cardiovascular disease. The safety and efficacy of pure isometric exercise among such patients have not been established.

 

Summary of Key Points

Many cardiac patients lack the physical strength and/or self-confidence to perform common activities of daily living. Mild-to-moderate resistance training can provide an effective method for improving muscular strength and endurance, preventing and managing a variety of chronic medical conditions, modifying coronary risk factors, and enhancing psychosocial well-being. Weight training has also been shown to attenuate the rate-pressure product when any given load is lifted.18 Thus, resistance training can decrease myocardial demands during daily activities such as carrying groceries or lifting moderate-to-heavy objects. Although the safety of resistance exercise in healthy persons and men with low-risk cardiovascular disease is well established, proper preliminary screening, appropriate prescriptive guidelines, and careful supervision are important. The extent to which the safety and effectiveness of resistance training can be extrapolated to other populations of cardiac patients (eg, women, older patients with low aerobic fitness, and patients with severe LV dysfunction) remains unclear. Resistance training in these latter groups may be considered if the perceived potential benefits of such training appear to be particularly advantageous for a given patient. However, patients should proceed with such training with caution, and close monitoring of adverse cardiovascular signs and symptoms, heart rate, and blood pressure should be performed, as well as surveillance for musculoskeletal injury. Owing to the lack of available data, the routine application of resistance training in moderate-to-high-risk cardiac patients cannot be recommended at this time and requires additional study. Because long-term compliance remains a challenge for adult fitness and exercise-based cardiac rehabilitation programs, resistance training can provide a means for maintaining interest and increasing diversity. Nevertheless, it should serve as a complement to, rather than a replacement for, the patient’s aerobic exercise prescription.

 

Footnotes

  • 1 Deceased.
  • This statement was approved by the American Heart Association Science Advisory and Coordinating Committee in September 1999. A single reprint is available by calling 800-242-8721 (US only) or writing the American Heart Association, Public Information, 7272 Greenville Ave, Dallas, TX 75231-4596. Ask for reprint No. 71-0183.
  • Copyright © 2000 by American Heart Association

 



 

 

Resistance training preserves muscle during weight loss and will enable the body to lose only fat when in a negative calorie balance.  


Effects of Resistance vs. Aerobic Training Combined With an 800 Calorie Liquid Diet on Lean Body Mass and Resting Metabolic Rate -1999

 

1.      Randy W. Bryner, EdD, 

2.      Irma H. Ullrich, MD FACN, 

3.      Janine Sauers, MS,

4.      David Donley, MS, 

5.      Guyton Hornsby, PhD, 

6.      Maria Kolar, MD and

7.      Rachel Yeater, PhD

+Author Affiliations

  1. Department of Human Performance and Applied Exercise Science (R.W.B., J.S., D.D., G.H., R.Y.), West Virginia University, Morgantown, West Virginia
  2. Department of Medicine, School of Medicine (I.H.U., M.K.), West Virginia University, Morgantown, West Virginia

1.      Address reprint requests to: Randy W. Bryner, EdD, Department of Human Performance and Applied Exercise Science, PO Box 9227, 8317 HSC, Morgantown, WV 26506

Abstract

Objective: Utilization of very-low-calorie diets (VLCD) for weight loss results in loss of lean body weight (LBW) and a decrease in resting metabolic rate (RMR). The addition of aerobic exercise does not prevent this. The purpose of this study was to examine the effect of intensive, high volume resistance training combined with a VLCD on these parameters.

Methods: Twenty subjects (17 women, three men), mean age 38 years, were randomly assigned to either standard treatment control plus diet (C+D), n=10, or resistance exercise plus diet (R+D), n=10. Both groups consumed 800 kcal/day liquid formula diets for 12 weeks. The C+D group exercised 1 hour four times/week by walking, biking or stair climbing. The R+D group performed resistance training 3 days/week at 10 stations increasing from two sets of 8 to 15 repetitions to four sets of 8 to 15 repetitions by 12 weeks. Groups were similar at baseline with respect to weight, body composition, aerobic capacity, and resting metabolic rate.

Results: Maximum oxygen consumption (Max VO2) increased significantly (p<0.05) but equally in both groups. Body weight decreased significantly more (p<0.01) in C+D than R+D. The C+D group lost a significant (p<0.05) amount of LBW (51 to 47 kg). No decrease in LBW was observed in R+D. In addition, R+D had an increase (p<0.05) in RMR O2 ml/kg/min (2.6 to 3.1). The 24 hour RMR decreased (p<0.05) in the C+D group.

Conclusion: The addition of an intensive, high volume resistance training program resulted in preservation of LBW and RMR during weight loss with a VLCD.

INTRODUCTION

Obesity is a major health problem in the United States affecting more than 34 million Americans [1]. Weight loss through dieting alone has been shown to result in a dramatic and sustained reduction in resting metabolism [2,3]. Very-low-calorie diets (VLCD) are often recommended in cases of extreme clinical obesity [4]. Their use has primarily been limited to persons who have failed to lose weight in more conventional diet programs and whose body mass index (BMI) is greater than 30 [5]. The problem often associated with the VLCD is the significant loss of lean tissue and a subsequent decrease in resting metabolism, especially in the early phase of the diet [6]. Endurance exercise in combination with severe energy restriction has been shown to result in less decrease in fat free mass (FFM) as compared with dieting alone [7,8]. However, a number of other studies have reported that endurance training in conjunction with very-low-calorie diets have either produced no effect [912] on the retention of FFM, or even caused an augmented loss compared with the very-low-calorie diets alone [13,14].

It has been suggested that resistance-training may be more effective than aerobic exercise in preserving or increasing FFM and resting metabolic rate (RMR) [15], especially in conjunction with a VLCD [16]. This combination, however, has not been extensively studied. A limited number of studies have combined resistance training with a VLCD and reported no added benefit for the retention of FFM compared to the VLCD alone [12,17]. However, resistance training during severe energy restriction and large-scale weight loss has been shown to produce significant hypertrophy in the skeletal muscle in which training occurred [18]. It does not attenuate the loss, however, of FFM in non-exercised tissue. It is possible that previous studies using resistance exercise protocols have utilized an insufficient volume of exercise. A review of several weight loss studies involving exercise concluded that those which produced the greatest weight loss involved either intensive training programs or were of relatively long duration [19]. The purpose of this study was to compare the effects of an intensive high volume resistance training program with a standard treatment control aerobic training program in subjects consuming a VLCD for 12 weeks. Changes in body weight, FFM and RMR were compared between groups.

METHODS

Participants

Twenty subjects (17 women, three men) with a mean age of 36.7±11.5 years, weight of 95.1±13.0 kg, and a BMI of 35.2±2.9 kg/m2 were recruited through newspaper advertisements to participate in a 12-week diet and exercise study. The criteria for participation in the study were no involvement in a regular exercise or weight loss program for at least 6 months prior to the first visit and no known cardiovascular, endocrinologic or orthopedic disorders. After informed consent was obtained, all potential subjects underwent a complete medical examination to determine their ability to participate. Eligible subjects were randomly assigned to one of two groups: standard treatment control plus VLCD (C+D, females=8, males=2), or resistance exercise plus VLCD (R+D, females=9, males=1). Each subject was given a maximum stress test, body composition analysis, and RMR determination prior to the start of the study. Subject characteristics can be found in Table 1.

Table 1.

Subject Characteristics at Baseline (Mean±SD)

 

C+D (N=10)

R+D (N=10)

Age (years)

39.0 ±11.6

35.8 ±13.2

Body weight (kg)

93.8 ±15.1

97.7 ±15.2

BMI

35.2 ±3.9

35.5 ±2.0

Fat (%)

44.5 ±7.0

46.2 ±6.8

LBW (kg)

51.4 ±10.6

51.6 ±7.9

Peak VO2 (ml/kg/minute)

21.2 ±2.6

21.1 ±4.2

RMR (kcal/day)

1569.2 ±202.39

1737.1 ±393.4

RMR (ml/kg/minute)

2.2 ±0.5

2.6 ±0.5

 

Resting Metabolic Rate

The RMR of subjects was determined at baseline and week 12. Following an overnight fast of at least 12 hours, subjects reported to the Human Performance Laboratory for the determination of RMR. Subjects were fitted with a Hans Rudolf face mask which was connected to an Aerosport metabolic system for the determination of breath by breath oxygen analysis. Subjects rested quietly in a supine position for 30 minutes in a thermo-neutral environment. The mean oxygen consumption (VO2) was calculated over the final 5 minutes and was used to determine the RMR. A menstrual history was taken for each of the female subjects at the start of the study. The goal of the study was to keep the phase of the menstrual cycle constant for the baseline and week 12 RMR test. However, since the study was exactly 12 weeks in duration, three of the females (one in C+D; two in R+D) who had a regular cycle during the study were post tested in the alternate cycle phase due to variations in cycle length.

Peak Oxygen Consumption and Hydrostatic Weighing

Peak oxygen consumption (PVO2) was determine at baseline and at 12 weeks by a symptom limited treadmill graded exercise test (GXT) using a modified Balke treadmill protocol [20]. Participants received a verbal overview of the GXT procedure and were fitted with a noseclip and a Hans Rudolph non-rebreathing mouthpiece for collection of expired air during the GXT. Breath by breath oxygen analysis was done with an Aerosport metabolic system. The protocol was initiated at a comfortable but brisk walking speed at 0% elevation. Treadmill speed remained constant throughout while the elevation was raised 1% each minute until volitional fatigue. Criteria for considering the GXT a maximal effort included at least two of the following: a plateau in maximal oxygen consumption, a respiratory ratio greater than 1.0, or voluntary discontinuation by the participant despite urging from the staff. Hydrostatic weighing was used to determine percent fat and fat free mass at baseline and at 12 weeks by a previously validated method [21].

Diet

All participants were given the same diet for the entire 12-week study period. The VLCD consisted of a liquid formula (40% protein, 49% carbohydrate, 11% fat) ingested five times a day yielding a total of 800 kcals daily. Two multivitamin tablets were also consumed daily. Diet and vitamins were provided by Health Management Resources Inc., Boston, MA. Participants were asked to refrain from other food or non diet beverages. All subjects met with an investigator weekly and were questioned about their medical condition and their compliance to the dietary protocol. Only 1 week worth of supplement was given at a time requiring subjects to be present at the weekly weigh-in and meeting sessions. Adherence to the diet was questioned if weight loss was less then 2 lbs per week. Each subject was asked to give a verbal declaration of adherence to the diet at each weekly meeting. Self-reported compliance was excellent.

Exercise Training Protocols

Resistance Training plus Diet.

The Resistance Training (R+D) group performed resistance exercises 3 days/week at 10 stations which included four lower body and six upper body exercises for 12 weeks. The initial 2 week were used to familiarize subjects to the resistance training apparatus and to determine the maximum weight that could be lifted either once (1RM) or eight times (8RM). The 1RM was determined as follows: Subjects performed one set of six to eight repetitions with a weight that could be lifted 12 to 15 times. A second set of two to three repetitions with a slightly heavier weight was performed. The weight was then increased to a cautious estimate of the 1RM at which time subjects attempted a single lift. If successful, the weight was gradually increased until the subject could not complete the one repetition lift. The 1RM test was conducted during week 2 and again at the end of week 12.

The training protocol was as follows: During the initial training session, subjects exercised by lifting a weight that was considered light for one set of approximately 15 repetitions per station. For the second workout, subjects performed two sets using the same weight as the first workout for each station. A gradual increase in weight was used until subjects were lifting a weight that could be lifted at least eight times but no more than 12 times as determined by the 8RM for two sets by the end of week 2 of training. Three sets were done at week 6 and four sets at week 9 all utilizing the same intensity and number of repetitions as described previously. Rest periods of approximately 1 minute were given between each exercise throughout the training session in a circuit-type workout. Careful monitoring of subjects was done to insure that once an individual was able to lift a weight 12 times on the final set, additional weight was added on the next training session. In addition, heart rate was monitored during the 1-minute resting periods periodically throughout the exercise session by radial artery palpation. This procedure was used throughout the 12-week training period to maintain a consistent level of training intensity. Training sessions were scheduled three times per week with a mandatory 1-day rest between visits to eliminate soreness and insure full recovery due to the aggressive nature of the protocol. Very few subjects complained of fatigue or soreness throughout the entire 12-week period.

Standard Treatment Control plus Diet.

The Standard Treatment Control (C+D) group exercised 4 days/week by walking, biking, or stair climbing. Exercise duration began at 20 minutes/day and increased 10 minutes/day/week until subjects were exercising 50 to 60 minutes each session. A self-paced protocol was used to simulate the HMR program in which exercise intensity is not prescribed but exercise is encouraged. In addition, heart rate was monitored approximately every 10 minutes during exercise by radial artery palpation. All participants were individually monitored at each exercise session to assure compliance with both the resistance and aerobic training protocols.

Data Analysis

A series of independent repeated measures analysis of variance (ANOVA) calculations were used to assess the degree to which exercise training (resistance vs. standard treatment control) produced changes in cardiovascular fitness, metabolic, and weight variables over two time points (pre-post training). Because of the low number of male subjects, data were analyzed both with males included and excluded. Results were similar, therefore the following results reflect the entire subject pool. A probability level of 0.05 was selected as the criterion for statistical significance.

RESULTS

No differences were observed between groups at the start of the study for body weight, percent fat, LBW, Max VO2, or RMR (Table 1). Compliance to exercise sessions was excellent in both groups during the 12-week study, averaging 92.5%±17.9% and 91.4%±21.8% for the C+D and R+D groups, respectively with no difference between groups. The C+D exercised at a greater (p<0.01) heart rate intensity compare to R+D during the daily training sessions (78.4%±5.9% vs. 69.0%±7.7%; mean±SD percent of max HR)

Maximum VO2 and treadmill time to fatigue was measured during the pretest and immediately after the 12-week study period (Table 2). There was a significant increase (p<0.05) in peak VO2 for both of the C+D and R+D groups (C+D: 21.2±2.6 to 27.6±3.4 ml/kg/minute; R+D: 21.1±4.2 to 27.4±5.5 ml/kg/minute, mean±SD) which was of similar magnitude. There was a significant group by test interaction (p<0.05) for the treadmill time to fatigue. (C+D: 12.0±3.7 to 17.5±2.8 minutes; R+D: 10.9±2.7 to 13.8±6.1 minutes, mean±SD). The C+D group had a significantly greater improvement than did R+D.

Table 2.

Changes in Body Composition Data, RMR and Peak VO2 (Mean±SD)

 

C+D (N=10)

R+D (N=10)

Pre

Post

Pre

Post

Body weight (kg)

93.8 ±15.1

75.7 ±10.6*

97.7 ±15.2

83.3 ±12.6*

BMI

35.2 ±3.9

28.6 ±2.8*

35.5 ±2.0

29.7 ±1.7*

Fat (%)

44.5 ±7.0

37.1 ±6.0*

46.2 ±6.8

37.6 ±4.9*

LBW (kg)

51.4 ±10.6

47.3 ±7.0*

51.6 ±7.9

50.8 ±9.0

Fat (kg)

40.8 ±9.1

28.0 ±6.47

44.9 ±19.9

30.4 ±5.3

Peak VO2 (ml/kg/minute)

21.2 ±2.6

27.6 ±3.4*

21.1 ±4.2

27.4 ±5.5*

Treadmill time (minutes) to fatigue

12.0 ±3.7

17.5 ±2.8*

10.9 ±2.7

13.8 ±6.1*

RMR (kcal/day)

1569.2 ±202.4

1358.5 ±297.1*

1737.1 ±393.4

1800.4 ±362.0

 

Body weight, body fat, LBM, BMI, and percentage of fat measured during the pretest and post test can be found in Table 2. Although both groups lost a significant amount of weight (p<0.05) there was a significant group by test interaction (p<0.01) for body weight. As can be seen in Table 2, C+D experienced a significantly greater decrease in body weight than did R+D, (19.4 vs. 14.7%). Each group experienced a similar reduction (p<0.05) in body fat (C+D: 40.8±9.1 to 28.0±6.5 kg, R+D: 44.9±10.9 to 30.4±5.3, kg), fat percentage (C+D: 44.5±7.0 to 37.1±6.0, R+D: 46.2±6.8 to 37.6±4.8), and BMI (C+D: 35.2±3.9 to 28.6±2.8, R+D: 35.5±2.0 to 29.7±1.7). There was also a significant (p<0.05) group by test interaction for LBW. Lean body weight decreased (p<0.05) in the C+D group (51.3±10.7 to 47.3±7.0 kg, mean±SD). No reduction in LBW was observed in the R+D group (51.6±7.8 to 50.7±9.0 kg, mean±SD).

There was a significant group by test interaction for the RMR expressed either as ml/kg/minute total weight (Fig. 1) or ml/kg LBW/minute (Fig. 2). As can be seen in Fig. 1, RMR increased (p<0.05) in the R+D group and was greater after 12 weeks compared with C+D. The RMR was also significantly greater (p<0.05) in the R+D versus the C+D group after 12-weeks expressed as ml/kg LBW/minute (Fig. 2) or 24-hour RMR (Table 2). The 24-hour RMR (Table 2)decreased significantly (p<0.05) in the C+D group (1569.2±202.4 to 1358.5±297.1 kcal/day, mean±SD).

 

View larger version:

Fig. 1

Resting metabolic rate (RMR, mean±SD) expressed as ml/kg/minute for the resistance plus diet (R+D) and standard treatment control aerobic plus diet (C+D) groups. RMR increased significantly (p<0.05) pre to post in R+D. It was also significantly greater (p<0.05) in the R+D than in the C+D group after 12 weeks. No change was observed in the C+D group pre to post.

 

Fig. 2

Resting metabolic rate (RMR, mean±SD) expressed as ml/kg LBW/minute for the resistance plus diet (R+D) and standard treatment control aerobic plus diet (C+D) groups. RMR was significantly greater (p<0.05) in the R+D than in the C+D group after 12 weeks. No change was observed in the C+D group pre to post.

The 1RM test results for leg press (LPRM), leg extension (LERM), bench press (BPRM), and shoulder press (SPRM) determined for R+D can be found in Table 3. There was a significant (p<.01) increase in strength in all four measures pre to post. The increases in strength ranged from 23.0±3.7% for SPRM to 48.0±30.1% for LERM. The average intensity during the final week of training for the R+D group for these four measures was 75.9±8.3% of the maximum 1RMs.

Table 3.

Changes in Strength after 12 Weeks of Resistance Training in the R+D Group (Mean±SD)

 

R+D (N=10)

Pre

Post

% Change

SPRM (lbs)

62.7 ±16.3

76.5 ±22.0*

23.0 ±3.7

BPRM (lbs)

67.9 ±16.5

95.0 ±25.5*

42.4 ±23.4

LPRM (lbs)

333.0 ±70.4

468.5 ±72.7*

38.7 ±22.4

LERM (lbs)

94.2 ±35.0

135.7 ±32.6*

48.0 ±30.1

  • R+D, resistance treatment plus VLCD.

SPRM=shoulder press one repetition maximum; BPRM=bench press one repetition maximum; LPRM=leg press one repetition maximum; LERM=leg extension one repetition maximum.

  • p<0.05, significantly different from pretest values.

 

DISCUSSION

The results from the present study indicate that the addition of a high intensity high volume resistance training program to a VLCD can attenuate the loss of LBM and increase RMR while still producing a significant weight loss. Combining aerobic exercise and a VLCD resulted in a significant decrease in body weight, LBM, and RMR. Resistance exercise was also associated with an increase in peak VO2 similar to changes seen in the standard treatment control aerobic group.

Other studies have reported that weight loss through the combination of diet and aerobic exercise results in significant loss of both body fat and LBM [912] similar to the present findings. The percentages of fat and lean body mass lost on VLCDs has been reported to be approximately 75% and 25%, respectively [22]. These percentages can fluctuate and may be affected by the amount of protein intake [23] and the amount of physical activity performed during the VLCD period. The diet used in the present study was composed of 40% protein or approximately 80 g/day. Froidevaux and others [23] reported that a low-energy diet supplemented with protein (77±4 g protein/day) resulted in a body fat mass decrease of 11±4 kg corresponding to 83±19% of weight loss. This would indicate that a diet supplemented with protein may contribute to the maintenance of LBM during periods of severe energy restriction. However, although diet composition can potentially affect the type of tissue lost during conditions of negative energy balance, such effects are usually very small given the short duration of most obesity treatment programs and therefore of minimal significance during the weight loss period [24]. Some evidence indicates that aerobic training concurrent with VLCD can cause greater loss in FFM than occurs with a VLCD alone [13,14]. Resistance training may be more advantageous to use during periods of severe energy restriction as it has been shown to have a low metabolic cost and to create a smaller energy deficit then aerobic training. This ultimately could help preserve FFM.

The relative percent change in weight after 12 weeks of VLCD was significantly greater in the standard treatment control aerobic training versus resistance training group. The scheduled exercise sessions per week for the C+D and R+D groups were four and three sessions, respectively. Subject compliance to exercise was excellent for both groups and did not differ. The resistance training group only exercised three times weekly because the aggressive program necessitated a day of rest between workouts. The C+D group exercised 4 days per week because this has been the experimental design used in past studies with VLCD [12,17] and because the purpose of this group was to serve as a standard treatment control. In addition, subjects in C+D exercised at a greater intensity per session (higher percent of maximum HR) as compared with the resistance trained subjects. Therefore, it is likely that these subjects expended more energy throughout the 12-week training program compared with R+D contributing to the greater weight loss. It is also possible that subjects in C+D were under a greater influence of catabolic hormones such as epinephrine during and immediately following each workout. Previous studies have reported that exercise can stimulate the sympathetic nervous system and that the release of catecholamines, especially epinephrine, during exercise is an intensity dependent process [25,26]. There is a possibility that subjects in R+D would have lost more weight had they exercised four times per week as opposed to three. However, what is known is that resistance training three times per week while consuming a VLCD was associated with a significant large loss of clinically relevant body weight and that this loss was almost entirely fat weight.

Few studies have been conducted that combine resistance training with weight loss and even fewer have examined this type of exercise in combination with a VLCD. Ballor and others [27] reported that resistance training can increase fat free mass in subjects consuming a diet of approximately 1200 kcal/day. However, most studies that have combined a VLCD (800 kcals or less) have reported that resistance training does not attenuate the loss of LBM or decrease in RMR. Resistance training combined with severe energy restriction (approximately 520 kcal/day) showed no greater retention of FFM than when severe energy restriction was used by itself [12]. In a similar study, Donnelly et al [17] reported that resistance training alone or in combination with aerobic training showed no greater effects in increasing weight loss or decreasing the loss of FFM or RMR compared to VLCD alone. The same study also reported no differences between aerobic and resistance training for any of the aforementioned parameters. Comparisons with these and the present study are difficult due to the different experimental designs used in each study, especially the resistance training protocols. The present study incorporated a progressive intensive resistance training protocol of high volume designed to not only prevent the decline in FFM with weight loss but enhance it if possible. Maintaining FFM and RMR may be very important during periods of weight loss.

Previous research has shown that significant muscle hypertrophy is possible in an individual undergoing severe energy restriction. Both slow twitch and fast twitch cross-sectional fiber area increased significantly in muscles that were resistive trained for 90 days in individuals who were consuming a VLCD [18]. Similar to the present study, dietary intake was approximately 800 kcals/day. However, hypertrophy was only seen in exercised muscles and the resistance training was unable to prevent the loss of overall FFM any better then diet alone. Muscular activity during severe energy restriction may decrease protein catabolism by decreasing the sensitivity of working muscles to catabolic hormones [28]. However, it is possible that some baseline level of dietary intake (i.e., 800 to 1200 kcals) is necessary for significant muscle hypertrophy to occur with resistance training. Studies have reported that a dietary intake of 1,000 to 1,500 kcals is needed to see the positive benefits that exercise training can have on RMR and FFM [29,30]. Alternatively, it is also possible that a more aggressive resistance training protocol which incorporates more muscle groups could attenuate this loss of FFM so often seen during severe energy restriction. Results from the present study showed, in fact, that this type of protocol was able to maintain FFM in individuals who were consuming a VLCD and losing a significant amount of weight.

A significant increase in peak VO2 was observed in both the aerobic and resistance trained individuals. Previous studies combining resistance training only with a VLCD have not reported increases in peak VO2 [12,17]. The present protocol required that the subject not only be challenged to lift more weight but also to maintain a minimal rest period between sets to incorporate a circuit type workout. This approach most likely contributed to the increased oxygen consumption noted in the resistance training group and may have contributed to the maintenance of FFM.

Subjects in the R+D also experienced a significant increase in both upper body and lower body strength as measured by the four 1RM tests. The 1RM testing was conducted at the end of the second week of training. This was done to allow for the initial strength gains so often seen at the beginning of a resistance training program, particularly in previously untrained individuals. The causes of these increases have been associated with the optimization of motor unit recruitment patterns or the so called “neurological training” [31]. Subjects in the C+D were instructed not to participate in any resistance training during the course of the study. For this reason, 1RM testing was not performed on these subjects because a single lifting measurement would most likely have been invalid and not comparable to those obtained from the R+D group.

In summary, the addition of high volume aggressive resistance training to a VLCD was associated with a significant weight loss while preserving LBW and RMR. The preservation of LBW and RMR during the consumption of a VLCD did not occur with a standard treatment control aerobic training program. These results indicate that high volume resistance training may be beneficial for patients who use a VLCD to lose large amounts of weight at least for periods up to 12 weeks. Future clinical studies need to determine its efficacy in long term weight loss programs and the maintenance of this weight loss for extended periods of time.

Footnotes

  • Presented in part at the 44th Annual Meeting of the American College of Sports Medicine, May 27–31, 1997, Denver, CO.
  • Received April 1, 1998.
  • Accepted August 1, 1998.

REFERENCES

 

1.      Kuczmarski RJ: Prevalence of overweight and weight gain in the United States. Am J Clin Nutr 55 (suppl): 495s–502s, 1992.

 

2.      Elliot DL, Goldberg L, Kuehl KS, Bennett WM: Sustained depression of the resting metabolic rate after massive weight loss. Am J Clin Nutr 49:93–96, 1989.

 

 

3.      Leibel RL: Changes in energy expenditure resulting from altered body weight. N Engl J Med 332: 621–628, 1995.

 

 

 

4.      Alban HJ: Metabolic responses to low- and very-low-calorie diets. Am J Clin Nutr 49: 745, 1989.

 

 

5.      Bray GA, Gray DS: Obesity, I: pathogenesis. West J Med 149: 429–441,1988.

 

 

6.      Krotkiewsk M, Grimby G, Holm G, Szczepanik J: Increased muscle dynamic endurance associated with reduction on a very-low-calorie diet.Am J Clin Nutr 51: 321–330, 1990.

 

 

7.      Hill JO, Sparling PB, Shields TW, Heller PA: Effects of exercise and food restriction on body composition and metabolic rate in obese women. Am J Clin Nutr 46: 622–630, 1987.

 

8.      Pavlou KN, Steffee WP, Lerman RH, Burrows BA: Effects of dieting and exercise on lean body mass, oxygen uptake, and strength. Med Sci Sports Exerc 17: 466–471, 1985.

 

9.      Hensen LC, Poole DC, Donahoe CP, Heber D: Effect of exercise training on resting energy expenditure during caloric restriction. Am J Clin Nutr46: 893–899, 1987.

 

10.  Van Dale D, Saris WHM, Schoffelen PFM, Ten Hoor F: Does exercise give an additional effect in weight reduction regimens?. Int J Obes 11: 367–375, 1987.

 

11.  Phinney SD, LaGrange BM, O’Connell M, Dansforth E: Effects of aerobic exercise on energy expenditure and nitrogen balance during very low calorie dieting. Metabolism 37: 758–765, 1989.

 

12.  Donnelly JE, Pronk NP, Jacobsen DJ, Pronk SJ, Jakicic JM: Effects of a very-low-calorie diet and physical-training regimens on body composition and resting metabolic rate in obese females. Am J Clin Nutr54: 56–61, 1991.

 

 

13.  Heymsfield SB, Casper K, Hearn J, Guy D: Rate of weight loss during underfeeding: relation to level of physical activity. Metabolism 38: 215–223, 1989.

 

14.  Hammer RL, Barrier CA, Roundy ES, Bradford JM, Fisher AG: Calorie-restricted low-fat diet and exercise in obese women. Am J Clin Nutr 49:77–85, 1989.

 

 

15.  Walberg JL: Aerobic exercise and resistance weight-training during weight reduction: Implications for obese persons and athletes. Sports Med 47: 343–356, 1989.

 

16.  Kreitzman SN: Lean body mass, exercise and VLCD. Int J Obes 13: 17–25, 1989.

 

17.  Donnelly JE, Jacobsen DJ, Jakicic JM, Whatley JE: Very low calorie diet with concurrent versus delayed and sequential exercise. Int J Obes 18:469–475, 1994.

 

18.  Donnelly JE, Sharp T, Houmard J, Carlson MG, Hill JO, Whatley JE, Israel RG: Muscle hypertrophy with large-scale weight loss and resistance training. Am J Clin Nutr 58: 561–565, 1993.

 

 

19.  King AC, Tribble DL: The role of exercise in weight regulation in nonathletes. Sports Med 11: 331–349, 1991.

 

20.  Balke B, Ware RW: An experimental study of physical fitness of Air Force personnel. US Armed Forces Med J 10: 675–688, 1959.

 

21.  Warner J, Yeater R, Sherwood L, Weber K: A hydrostatic weighing method using total lung capacity and a small tank. Br J Sports Med 1: 17–21, 1986.

 

22.  Burges NS: Effect of a very low calorie diet on body composition and resting metabolic rate in obese men and women. J Am Diet Assoc 91:430–434, 1991.

 

 

23.  Froidevanx F, Schutz Y, Christin L, Jequier E: Energy expenditure in obese women before and during weight loss, after refeeding, and in the weight-relapse period. Am J Clin Nutr 57: 35–42, 1993.

 

24.  Hill JO, Drougas H, Peters J: Obesity treatment: Can diet composition play a role?. Ann Intern Med 119: 694–697, 1993.

 

 

25.  Bloom SR, Johnson RH, Park DM, Rennie MJ, Sulaiman WR: Differences in the metabolic and hormonal responses to exercise between racing cyclists and untrained individuals. J Physiol 258: 1–18, 1996.

 

26.  Farrell PA, Anthony AB, Morgan WP, Pert CB: Enkephalins, catecholamines, and psychological mood alterations: effects of prolonged exercise. Med Sci Sports Exerc 19: 347–353, 1997.

 

27.  Ballor DL, Katch VL, Becque MD, Marks CR: Resistance weight training during caloric restriction enhances lean body weight maintenance. Am J Clin Nutr 47: 19–25, 1988.

 

 

28.  Goldberg AL, Etlinger JD, Goldspink DF, Jablecki C: Mechanism of work-induced hypertrophy of skeletal muscle. Med Sci Sports Exerc 7:248–261, 1975.

 

29.  Poehlman ET, Melby CL, Goran MJ: The impact of exercise and diet restriction on daily energy expenditure. Sports Med 11: 78–101, 1991.

 

30.  Sweeney ME, Hill JO, Heller PA, Baney R, DiGirolamo M: Severe vs. moderate energy restriction with and without exercise in the treatment of obesity: efficiency of weight loss. Am J Clin Nutr 57: 127–134, 1993.

 

31.  Sale DG: Neural adaptations to resistance training. Med Sci Sports Exerc 20: S135–S145, 1988.

 



 

 

Do Statins Make It Tough to Exercise?

By GRETCHEN REYNOLDS

New York Times

MARCH 14, 2012, 12:01 AM

 

For years, physicians and scientists have been aware that statins, the most widely prescribed drugs in the world, can cause muscle aches and fatigue in some patients. What many people don’t know is that these side effects are especially pronounced in people who exercise.

To learn more about the effect statins have on exercising muscles, scientists in Strasbourg, France, recently gave the cholesterol-lowering drug Lipitor to a group of rats for two weeks, while a separate control group was not medicated. Some of the rats from both groups ran on little treadmills until they were exhausted.

It was immediately obvious that the medicated animals couldn’t run as far. They became exhausted much earlier than the rats that had not been given statins.

The differences were even more striking at a cellular level. When the scientists studied muscle tissues, they found that oxidative stress, a measure of possible cell damage, was increased by 60 percent in sedentary animals receiving statins, compared with the unmedicated control group.

The effect was magnified in the runners, whose cells showed 226 percent more oxidative stress than exercising animals that had not been given statins.

 

The medicated running rats also had less glycogen or stored carbohydrates in their muscles than the unmedicated runners. And their mitochondria, tiny mechanisms within cells that generate power, showed signs of dysfunction; mitochondrial respiratory rates were about 25 percent lower than in the unmedicated runners.

Over all, the study data showed that working out while taking statins “exacerbated metabolic perturbations” in muscles, the study’s authors conclude. The drug made running harder and more damaging for the rats.

Statins’ safety has come under considerable scrutiny in recent weeks. Last month, the Food and Drug Administration added safety alerts to prescribing information for statins, warning of risks for memory loss and diabetes, as well as muscle pain. (Read more about those concerns here.)

More than 20 million Americans are taking statins, and by most estimates, at least 10 percent of them will experience some degree of muscle achiness or fatigue. That proportion rises to at least 25 percent among people taking statins who regularly exercise, and may be 75 percent or higher among competitive athletes.

Why and how exercise interacts with statins to cause muscle problems remains unknown, in part because it’s more difficult to study molecular responses in people than in animals. (People generally dislike muscle biopsies.) But an eye-opening 2005 study of healthy young people taking statins showed that the gene expression profiles in their leg muscles after exercising were very different from those of volunteers not using statins. In particular, genes associated with muscle building and repair were “down-regulated,” or expressed less robustly, in the group using statins.

“It seems possible that statins increase muscle damage” during and after exercise “and also interfere somewhat with the body’s ability to repair that damage,” says Dr. Paul Thompson, the chief of cardiology at Hartford Hospital in Connecticut and senior author of the study.

The finding creates a worrisome conundrum for patients and their doctors. Statin users typically are at high risk for cardiovascular problems, making them the very people who could most benefit from regular exercise. But it may be that as a result of muscle problems, some people taking statins exercise less or not at all. “Lower energy is linked to less interest in activity,” says Dr. Beatrice Golomb, an associate professor of medicine at



The Futility of Aerobic Exercise for Weight Loss

By: Jade A. Teta ND, CSCS & Keoni Teta ND, LAc, CSCS 


When talking about exercise, aerobic exercise is the worst way to reach your weight loss goals. You must be thinking that this can’t be true. After all, experts and the media have been telling us for decades that aerobic exercise is the best way to lose weight. They are wrong. If you are serious about weight loss and health, you should seriously rethink your exercise program and replace an aerobic regime, which yields small benefits, to a resistance or interval workout. The fact that aerobic exercise is not optimal for weight loss is supported by real world evidence, confirmed by practical experience, and is corroborated by science. Science is often thought of as the only criteria necessary for proof, but it usually operates without an organizing context and therefore provides mixed messages and sometimes wrong conclusions. Although it has taken time, science is now proving other forms of exercise superior to aerobics when it comes to weight loss. 


Cardiovascular vs. Aerobic Exercise:

There is an important distinction to be made: aerobic and cardiovascular training are not the same thing. Cardiovascular exercise refers to the heart, lungs and vessels of the body working at an accelerated rate to sustain exercise. Aerobic exercise refers to the use of oxygen to burn fuel for energy. Why is this important? Aerobic exercise is limited; in other words, once oxygen becomes limited, you are no longer doing aerobic activity. While cardiovascular exercise is maintained as long as the muscles of the body are working, aerobic exercise by its very nature must be done at a low enough intensity to ensure adequate oxygen consumption. Therein lies the problem. In order for the body to get leaner, it must be continually challenged with increasing intensity. Aerobic exercise has a built-in intensity ceiling and therefore becomes a limiting factor for adaptation. Aerobic enthusiasts will quickly point out that more fat is burned with aerobic exercise than with anaerobic exercise.


This is true only from a relative perspective—the lower the exercise intensity, the higher proportion of fat is burned compared to sugar. However, exercise of higher intensity and beyond the aerobic training zone burns more total energy and fat.  EPOC and Extended Energy Usage Analysis shows that aerobic cardiovascular exercise does NOT burn more total fat than higher intensity anaerobic cardiovascular exercise, but the differences do not stop there. In the last decade, exercise research has shown that it is not just what happens during exercise, but also what happens after exercise that makes a difference.


Have you ever walked up a large flight of stairs? When do you breathe the hardest during that activity? It is not until you reach the top of the stairs that your body really begins to gasp for air. In exercise research, this is known as EPOC (Excess Post exercise Oxygen Consumption) and it refers to the “catch up effect” the body has in response to intense exercise. This increased metabolism induced by intense cardiovascular exercise can last as long as 48 hours!! (19) As it turns out, the largest increases in EPOC occur with anaerobic cardiovascular exercise like resistance training and interval exercise and not training in the “aerobic zone.” EPOC in Evolutionary Context: The mechanism of EPOC is not fully understood, but with a little context and some known science we can get a good idea of what is going on.


When early man had to kill his dinner or avoid being eaten, his level of fitness and adaptation determined success or failure. Every time he missed a kill or barely escaped being dinner, his body got leaner, faster, and stronger in order to survive. Hormonal signals brought on by his intense activity are what stimulated this growth. Every time we eat, exercise, or sleep hormones are released that act as chemical messengers telling the body to get stronger or weaker, fatter or leaner, and age faster or slower.


When it comes to exercise there is a threshold of intensity beyond which cascades of growth hormones are released leading to a “ripple effect” on the metabolism forcing the body to adapt. Part of this adaptation is the EPOC phenomenon. With aerobic exercise this threshold is never breached and the body never gets the signals to get lean, fast, and strong. 


Hormonal Effects of Intense exercise: 

Many researchers and clinicians have been confused with the hormonal fat burning effect that may be behind EPOC.  While they are aware that hormones are the messengers that tell the body how to use its fuel, they sometimes forget how hormones work together. If we realize that the net action of a single hormone depends on other hormones around with it, we get a far better understanding than looking at its action in isolation. Let’s take cortisol for instance. Cortisol has been blamed for causing fat storage around the belly, increased aging, and lowering the immune system. However the negative effects of cortisol only surface when human growth hormone, testosterone and other growth hormones are not around with it.  

 

Cortisol is a hormone that raises sugar in the blood and if activity does not use up this liberated fuel, insulin will be needed to lower blood sugar. Unfortunately, insulin lowers blood sugar by storing it away as fat and then locking it in the fat cell. As long as insulin is around, fat burning cannot take place. When cortisol acts to raise blood sugar it is doing so as a natural protective mechanism. The natural response to stress is to release cortisol and adrenaline so that we have high energy sugar to fight or flee. If we don’t move or move slowly in response to stress, large amounts of cortisol, adrenaline, and sugar are still released, but never used. The lack of intense movement that we are designed for means the unused sugar gets stored as fat while cortisol, adrenaline, and other stress hormones “rev our engines” doing damage to our physiology; making us susceptible to fat storage and increased aging. 


Stress hormones like cortisol are designed to work with growth hormones like testosterone and HGH. When cortisol is unopposed by these growth producing counterparts it leads to muscle wasting and fat storage around the waist. However, when testosterone and HGH are present with cortisol, fat storing at the tummy is blocked and the three hormones together amplify fat burning.  This scenario results in weight loss, not weight gain. So you see, stress hormones in high amounts are appropriate when they act with the growth hormones of the body.


Interestingly enough, this is exactly how early man’s hormonal systems worked in the world of actual fight or flight. By simulating this action in exercise we can literally program our bodies to burn fat, build muscle, and slow aging.
Aerobic exercise, by its very nature never allows the body to reach the intensity required to release growth promoting testosterone and HGH and continually exposes the body to unopposed cortisol which makes weight loss more difficult. Stress hormones can not lead to fat gain and aging when they are followed by high intensity activity.  In the natural world, stress leads to increased availability of sugar which leads to the ability to fight or flee. High intensity activity works with this process by generating protective fat burning and anti-aging hormones that make us leaner, faster, and stronger the next time we encounter stress.  Low intensity activity, like walking or jogging, does not have the same effect. There is actually research suggesting that long duration exercisers who stop running are more prone to higher levels of unopposed cortisol, a situation that may actually lead to fat gain (16)


It is useful to point out that humans in natural conditions did low intensity activity all day everyday. To a prehistoric caveman or modern day hunter-gatherer walking is considered a necessity not exercise. Modern humans should do as much of it as they can, but the last thing one needs to do in response to high levels of stress and blood sugar is engage in slow-mo aerobic exercise. This runs counter to inherited physiology and biochemical understanding. Our genes and metabolic processes are tuned to the lifestyle of our huntergather ancestors. Intelligent exercise works along with this ancient machinery. 


The Science:Still skeptical?

A 2001 study in the American College of Sports Medicine’s flagship journal, Medicine and Science in Sports and Exercise illustrates our point nicely. This study compared two groups of women. One group exercised using standard zone aerobic training while the other group used anaerobic interval exercise. The interval group exercised for 2 minutes at a highly intense 97% max heart rate. They then rested by doing three minutes of low intensity activity. The more aerobic group performed moderately intense activity at close to 70% of max heart rate. The researchers made sure that each group burned exactly 300 calories. Despite exercising longer and burning the same amount of calories, the aerobic group had less loss in body fat at the end of the study compared to the interval group. In addition, fitness in the interval group was also substantially greater than the aerobic group. This study demonstrates the effect of EPOC and shows that something other than just calories is driving metabolism. A similar study published in the same journal in 1996 showed that an anaerobic trained interval group burned significantly more fat than their aerobically trained counterparts. Not only did the interval group burn more fat during exercise, but they exhibited increased fat burning effects that persisted for 24 hours after the exercise had stopped. These results clearly show that anaerobic activity burns more overall fat and calories during exercise, and demonstrates EPOC will lead to a continued fat burn after exercise as well.

 

Perhaps the most interesting thing about this study is that the interval group was able to accomplish all this with an exercise session that was a full 15 minutes shorter than the aerobic group. This shows that intelligent exercise moving away from the aerobic paradigm allows exercisers to have their cake and eat it too. 

Perhaps the most telling study on the effects of anaerobic vs. aerobic cardiovascular training came in 1994 in the journal Metabolism.  This study tracked two groups of people undergoing different modes of exercise. One group did zone aerobic training for a period of 20 weeks. Group 2 did 15 weeks of a high intensity interval program. The researchers wanted to see how each program would affect body fatness and metabolism. The results showed that the aerobic group burned 48% more calories than the interval group (120.4 MJ vs 57.9MJ) over the course of the study.  However, despite the huge caloric disadvantage, the interval group enjoyed a 9 fold greater loss in subcutaneous fat (fat under the skin).  Most remarkably, resting levels of 3-hydroxyacyl coenzyme A dehydrogenase (HADH), an enzymatic marker of fat burning, were significantly elevated in the interval group. The implications of this study are immense when you consider the interval group trained 5 weeks less than the aerobic group, had shorter workouts, and yet far exceeded the aerobic group in fat burning at rest and during exercise. The measurement of fat burning enzymes in this study shows for the first time that this new exercise technology can “teach” the body to be a more efficient fat burning machine.(3) 

 

Aerobic exercise is not all bad. While it has marginal benefit in attaining weight loss, it does live up to its reputation in the realm of maintaining weight loss. It is a healthy and beneficial form of exercise, and lets face it any form of exercise is better than none. If you have gotten the idea that we want you to stop doing all aerobic exercise you are wrong. We just want you to get real and use aerobic exercise as it was intended, as a necessity not exercise. Walking and lower intensity exercise should be done as often as possible. They benefit the body, the mind, the spirit and are energizing. Just remember, if you want to lose weight, transform your body, and slow the aging process you will have to invest in high intensity exercise. It is far better to learn new exercise habits that will deliver results in accordance with your effort. A sole focus on aerobic training will only serve to make a difficult process more challenging.


1) King, J., Panton, L., Broeder, C., Browder, K., Quindry, J., & Rhea, L. (2001). A comparison of high intensity vs. low intensity exercise on body composition in overweight women. Medicine and Science in Sports and Exercise, 33, A2421

2) Treuth, M.S., Hunter, G.R., & Williams, M. (1996). Effects of exercise intensity on 24-h energy expenditure and substrate oxidation. Medicine and Science in Sports and Exercise, 28, 1138-1143 

3) Tremblay, A., Simoneau, J.A., & Bouchard, C. (1994). Impact of exercise intensity on body fatness and skeletal muscle metabolism. Metabolism, 43, 814-818 

4) Bahr, R., Gronnerod, O., & Sejersted, O.M. (1992). Effect of supramaximal exercise on excess postexercise O2 consumption. Medicine and Science in Sports and Exercise, 24, 66-71 

5) Grediagin, A., Cody, M., Rupp, J., Benardot, D., & Shern, R. (1995). Exercise intensity does not effect body composition change in untrained, moderately overfat women. Journal of the American Dietetic Association, 95, 661-665 

6) Hunter, G.R., Weinsier, R.L., Bamman, M.M., & Larson, D.E. (1998). A role for high intensity exercise on energy balance and weight control. International Journal of Obesity and Related Metabolic Disorders, 22, 489-493 

7) LaForgia, J., Withers, R.T., Shipp, N.J., & Gore, C.J. (1997). Comparison of energy expenditure elevations after submaximal and supramaximal running. Journal of Applied Physiology, 82, 661-666

8) Phelain, J.F., Reinke, E., Harris, M.A., & Melby, C.L. (1997). Postexercise energy expenditure and substrate oxidation in young women resulting from exercise bouts of different intensity. Journal of the American College of Nutrition, 16, 140-146

9) Pritzlaff, C.J., Wideman, L., Blumer, J., Jensen, M., Abbott, R.D., Gaesser, G.A., Veldhuis, J.D., & Weltman, A. (2000). Catecholamine release, growth hormone secretion, and energy expenditure during exercise vs. recovery in men. Journal of Applied Physiology, 89, 937-946 

10) Melanson, E.L., Sharp, T.A., Seagle, H.M., Horton, T.J., Donahoo, W.T., Grunwald, G.K., Hamilton, J.T., & Hill, J.O. (2002). Effect of exercise intensity on 24-h energy expenditure and nutrient oxidation. Journal of Applied Physiology, 92, 1045-1052 

11) Bryner, R.W., Toffle, R.C., Ullrich, I.H., & Yeater, R.A. (1997). The effects of exercise intensity on body composition, weight loss, and dietary composition in women. Journal of the American College of Nutrition, 16, 68-73 

12) Thompson, D.L., Townsend, K.M., Boughey, R., Patterson, K., Bassett, D.R. Jr. (1998). Substrate use during and following moderate- and low-intensity exercise: implications for weight control. European Journal of Applied Physiology, 8, 43-49 

13) Miller, W.C., Koceja, D.M., & Hamilton, E.J. (1997). A meta analysis of the past 25 years of weight loss research using diet, exercise or diet plus exercise intervention. International Journal of Obesity, 21:941-947. 

14) Utter, A.C., Nieman, D.C., Shannonhouse, E.M., Butterworth, D.E., & Nieman, C.N. (1998). Influence of diet and/or exercise on body composition and cardiorespiratory fitness in obese women. International Journal of Sport Nutrition, 8:213-222.  

15) Wilmore, J.H., Despres, J.P., Stanforth, P.R., Mandel, S., Rice, T., Gagnon, J., Leon, A.S., Rao, D.C., Skinner, J.S., & Bouchard, C. (1999). Alterations in body weight and composition consequent to 20 wk of endurance training: the HERITAGE Family Study. American Journal of Clinical Nutrition, 70:346-352.

16) Jacks, D.E., Sowash, J., Anning, J., McGloughlin, T., & Andres, F. (2002). Effect of exercise at three exercise intensities on salivary cortisol. Journal of Strength and Conditioning Research, 16, 286-289 

17) Borsheim E, Bahr R, Hansson P, Gullestad L, Hallen J, Sejersted OM. (1994) Effect of beta-adrenoceptor blockade on postexercise oxygen consumption. Metabolism., 43(5), 565-71.  

18) Gaesser GA, Brooks GA. (1984) Metabolic bases of excess post-exercise oxygen consumption: a review. Medicine and Science in Sports and Exercise., 16(1), 29-43. 

19) Schuenke, M.D., Mikat, R.P., & McBride, J.M. (2002). Effect of an acute period 



Fitness Training: Elements of a Well-Rounded Routine

Fitness training balances five elements of good health. Make sure your routine includes aerobic fitness, muscular fitness, stretching, core exercise and balance training.

By Mayo Clinic staff

Whether you're a novice taking the first steps toward fitness or an exercise fanatic hoping to optimize your results, a well-rounded fitness training program is essential. Include these five elements to create a balanced routine.

Aerobic fitness

Aerobic exercise, also known as cardio or endurance activity, is the cornerstone of most fitness training programs. Aerobic exercise causes you to breathe faster and more deeply, which maximizes the amount of oxygen in your blood. The better your aerobic fitness, the more efficiently your heart, lungs and blood vessels transport oxygen throughout your body — and the easier it is to complete routine physical tasks and rise to unexpected challenges, such as running to your car in the pouring rain.Aerobic exercise includes any physical activity that uses large muscle groups and increases your heart rate. Try walking, jogging, biking, swimming, dancing, water aerobics — even leaf raking, snow shoveling and vacuuming. Aim for at least two hours and 30 minutes a week of moderate aerobic activity or one hour and 15 minutes a week of vigorous aerobic activity — preferably spread throughout the week.

Strength training

Muscular fitness is another key component of a fitness training program. Strength training at least twice a week can help you increase bone strength and muscular fitness. It can also help you maintain muscle mass during a weight-loss program.Most fitness centers offer various resistance machines, free weights and other tools for strength training. But you don't need to invest in a gym membership or expensive equipment to reap the benefits of strength training. Hand-held weights or homemade weights — such as plastic soft drink bottles filled with water or sand — may work just as well. Resistance bands are another inexpensive option. Your own body weight counts, too. Try push-ups, abdominal crunches and leg squats.

Core exercises

The muscles in your abdomen, lower back and pelvis — known as your core muscles — help protect your back and connect upper and lower body movements. Core strength is a key element of a well-rounded fitness training program.Core exercises help train your muscles to brace the spine and enable you to use your upper and lower body muscles more effectively. So what counts as a core exercise? Any exercise that uses the trunk of your body without support, including abdominal crunches. You can also try various core exercises with a fitness ball.




New Insights on Exercise For Weight Loss

Metabolic Effect Copyright © 2012 

Jade Teta ND, CSCS and Keoni Teta ND, CSCS

Exercise prescriptions for weight loss have long been dominated by aerobic exercise like jogging, biking, or swimming.  This is despite the fact that recent and past research shows aerobic exercise provides very little benefit over diet alone when it comes to body change. Anaerobic exercise, long ignored in discussions of weight loss, may provide unexpected benefit through previously ignored mechanisms. Both resistance exercise using weights, and interval cardiovascular exercise that alternates periods of intense exertion with rest, may provide superior benefits for weight loss with minimal investments in time.

Does aerobic exercise work?

A recent study by Dr. Edward Melanson published in Exercise and Sport Science reviews April 2009, was widely reported in the media as proof against the metabolism stimulating potential of exercise (1).  However, this study looked almost exclusively at moderate intensity aerobic exercise like jogging, biking or swimming.  What it showed was aerobic exercise of moderate intensity did not provide a metabolic advantage aside from the calories burned during activity. A previous meta-analysis done over a 25-year period came to a similar conclusion (2).  This study analyzed the data from over 400 studies comparing diet alone, aerobic exercise alone, or diet plus aerobic exercise on weight loss.  The results showed that aerobic exercise did not provide a significant advantage to weight loss over diet by itself. This information is shocking considering the pervasive belief among doctors and the exercising public that long duration moderate intensity aerobic exercise is a proven modality for effective weight loss.

Aerobic vs. Anaerobic exercise

While the ability of aerobic exercise to impact weight loss has been questioned, anaerobic exercise modalities like weight training and cardiovascular interval training have enjoyed increased interest. Before we go further it is useful to briefly review anaerobic and aerobic exercise. In very simple terms, aerobic metabolism takes place in the mitochondria and requires the use of oxygen. Anaerobic metabolism proceeds through a different pathway and requires neither the involvement of mitochondria or oxygen. It is well known that as exercise intensity increases anaerobic metabolism dominates; unfortunately, the exact anaerobic contribution to energy production is exceedingly difficult to measure. The standard way to approximate calorie expenditure and substrate utilization during exercise is through the measure of respiratory gases.  The ratio of carbon dioxide expelled to oxygen consumed can give a predictable evaluation of not only energy use but also fuel utilization – glucose vs. fat. However, this method is only valid at lower exercise intensities. At higher intensities the relationship is less clear.  To help address this error, researchers also measure EPOC (excess post-exercise oxygen consumption).  This is a measure of the recovery energy expenditure after exercise and it has been thought to consist of anaerobic contributions to exercise as well.

There is some argument as to how meaningful this EPOC effect can be. Many researchers claim the impact does not last long, only several hours, and amounts to at best 15% of total calories burned.  However, these approximations come largely from studies with lower exercise intensities involving standard aerobic exercise protocols. Studies utilizing highly anaerobic protocols including cardiovascular interval protocols and weight training show a much different picture.  In  2001, Schuenke et. al. showed a circuit resistance training program utilizing heavy weights, short rest periods and lasting only thirty-one minutes was able to generate an EPOC that persisted for 48 hours (3). The results showed that metabolism 24 hours and 48 hours after the exercise session was increased by 21% and 19% respectively. The researchers point out that for a typical 180-pound individual “This equates to 773 calories expended post exercise”. This is far from insignificant and greatly exceeds the 15% number many researchers quote for EPOC.  Similar findings have been shown in women using a similar resistance training protocol. In women the elevation in metabolic rate lasted 16 hours (4). The same findings have been seen with interval training as well with significant EPOC values lasting up to 24 hours (5-6). 
Exercise Burn and “After-burn”

Dr. Christopher Scott of the University of Southern Maine is a pioneer in attempting to understand the full contribution of energy from both anaerobic metabolism and EPOC. He has published extensively in this area and is the author of one of the authoritative textbooks in this field entitled, A Primer for Exercise and Nutritional Sciences: Thermodynamics, Bioenergetics, and Metabolism (13). In his works, Dr. Scott points out that EPOC does not fully explain anaerobic energy use and that the anaerobic contributions to exercise may be even greater than originally thought, especially where lactic acid production is concerned. Dr. Scott emphasizes that to fully account for calories burned during exercise three components must be measured: calories burned aerobically during exercise, calories burned aerobically after exercise (EPOC), and anaerobic calories burned from exercise (7-11). EPOC and the anaerobic lactic acid measurements for exercise are considered separate by Dr Scott.

In 2005 Dr. Scott published a paper entitled Misconceptions about Aerobic and Anaerobic Energy Expenditure where he explains his argument and highlights one of his studies comparing a 3.5-minute aerobic exercise challenge with three work-equivalent 15-second sprints (7). When he compared the aerobic calorie use during the exercise bouts he found the aerobic challenge burned 120KJ or 29 Kcal, while sprinting used only 16KJ or ~4 Kcal. However, when he added on the measure for EPOC the calorie comparison for the two exercise bouts became close to equal rising to 149KJ or 36 Kcal for the aerobic bout and 165KJ or 39 Kcal for the sprint exercise.  Finally, he added on the anaerobic contribution (blood lactate measure). At this point the numbers for the anaerobic sprint exercise rose significantly. The final tally was 165KJ or 39 Kcal for the aerobic exercise compared with 273KJ or 65 Kcal for the sprint exercise.  By adding both EPOC and the anaerobic contribution to the original calorie total, the sprint exercise was shown to far surpass the aerobic exercise in calories burned. This is striking when one considers the aerobic exercise session took over 4 times longer to complete (210 seconds vs. 45 seconds). What is most compelling is that without including both EPOC and anaerobic expenditure from lactate to the energy totals, a full 94% of the calories used during sprinting would go uncounted.
Dr. Scott has demonstrated a similar underestimation of energy use in weight training.  In studies published in 2006 and 2009 in the Journal of Strength and Conditioning Research, Dr. Scott quantified anaerobic energy use during weight lifting (7,11). Using his method of measuring and quantifying all three components of calorie burn (aerobic metabolism during exercise, EPOC, and anaerobic contributions by lactate) he was able to show that weight training exercise burns 70% more calories than originally thought. 
Final Thoughts

In light of this new understanding regarding exercise and weight loss, the caloric contribution for anaerobic exercise can be substantial. Given the much shorter durations of exercise required and the long exercise after-burn elicited, anaerobic exercise can make significant contributions towards creating caloric deficits for weight loss. It seems wise for healthcare providers to adjust their weight loss recommendations regarding aerobic exercise to include anaerobic modalities as well. A strong anaerobic exercise program involving both weight training and cardiovascular interval training would be a wise addition to aerobically centered weight loss programs. This new understanding provides much needed tools in the battle against obesity related illnesses and their complications.
References:

1. Melanson, et. al. Exercise improves fat metabolism in muscle but does not increase 24-hr fat oxidation. Exercise and Sport Sciences Reviews. 2009;37(2):93-101.

2. Miller, et. al. A meta analysis of the past 25 years of weight loss research using diet, exercise or diet plus exercise intervention. International Journal of Obesity. 1997;21:941-947.

3. Schuenke, et. al. Effect of an acute period of resistance exercise on excess post-exercise oxygen consumption: Implicationsfor body mass management European Journal of Applied Physiology. 2002;86:411-417.

4. Osterberg, et. al. Effect of acute resistance exercise on postexercise oxygen consumption and resting metabolic rate in young women. International Journal of Sport Nutrition and Exercise Metabolism. 2000;10(1):71-81.

5. Tremblay, et. al. Impact of exercise intensity on body fatness and skeletal muscle metabolism. Metabolism. 1994;43:814-818

6. Treuth, et. al. Effects of exercise intensity on 24-h energy expenditure and substrate oxidation. Medicine and Science in Sport and Exercise. 1996;28:1138-1143

7. Scott, et. al. Misconceptions about aerobic and anaerobic energy expenditure. Journal of the International Society of Sports Nutrition. 2005;2:32-37.  

8. Scott et. al. Estimating total energy expenditure for brief bouts of exercise with acute recovery.  Applied Physiology Nutrition and Metabolism. 2006;31:144-149.

9. Scott, et. al. Contribution of blood lactate to the interpretation of total energy expenditure for weight lifting. Journal of Strength and Conditioning Research. 2006;20:21-28.   

10. Scott et. al. Contributions of Anaerobic Energy Expenditure to Whole-body Thermogenesis. Nutrition and Metabolism. 2005;2:14. 

11. Scott, et. al. Direct and indirect calorimetry of lactate oxidation: implications for whole-body energy expenditure. Journal of Sports Science. 2005;23:15-19.

12. Scott, et. al. Energy expenditure before during and after the bench press. Journal of Strength and Conditioning Research. 2009 Mar;23(2)611-618.

13. Scott CB, A Primer for Exercise and Nutritional Sciences: Thermodynamics, Bioenergetics, and Metabolism. Human Press. 2008



Anaerobic Vs. Aerobic Exercise & Weight Loss

LIVESTRONG.com

Feb 8, 2011 | By Sarah Terry 

Anaerobic exercise is basically the opposite of aerobic exercise. Anaerobic means "without oxygen," while "aerobic" means "with oxygen." The main difference between aerobic and anaerobic exercise is the duration and intensity level of the activities. Both types of exercise are essential for losing weight, however, so you should try to incorporate both into your physical fitness routine.

Aerobic Exercise

Aerobic exercise involves physical activities that make you move your large muscle groups and breathe more deeply, with your heart pumping harder, explains the University of Pittsburgh Medical Center. Aerobic exercise not only strengthens the major muscles in your buttocks, legs and arms, but it also strengthens your lungs and heart. 
Aerobic exercise relies on an increased supply of oxygen through your cardiopulmonary system. Walking, jogging, jumping rope, swimming and dancing are all good examples of aerobic exercise, reports MayoClinic.com. Other examples of aerobic exercise include running, bicycling, hiking and certain sports that involve running like soccer and basketball.

Anaerobic Exercise

Unlike aerobic exercise, anaerobic exercise relies on your muscles' strength instead of oxygen flow through your bloodstream. Anaerobic exercise involves high-impact physical activities that demand short spurts of muscle strength, explains the University of Iowa Health Care. Sprinting and weightlifting are good examples of anaerobic exercise. 
Anaerobic exercise like weightlifting uses energy produced by your body's metabolism and doesn't require oxygen. Because oxygen isn't involved in supplying your body's energy to perform anaerobic exercises, these activities are usually performed in very short durations. If you perform anaerobic exercises for longer time periods, your body begins producing lactic acid, a byproduct that can cause muscle fatigue. Put simply, aerobic exercises are longer-duration and lower-intensity, while anaerobic exercises are high-intensity and short-duration.

Weight Loss

You need both aerobic and anaerobic exercises for physical fitness, but aerobic exercise is often preferred for weight loss. This is because aerobic exercise helps you to burn more calories than anaerobic exercise, although strength training activities like weightlifting are certainly essential to building muscle, says the University of Pittsburgh Medical Center. 
For fitness, weight loss and overall health, you should combine aerobic exercise, anaerobic exercise like weight training or resistance exercise, and stretching into your physical-fitness routine. You should perform at least 60 minutes per day of moderate- to vigorous-intensity exercise most days of the week to lose weight. You need to perform anaerobic exercise like strength training less frequently -- typically just two or three times per week in 20- to 30-minute sessions, MayoClinic.com notes. Like aerobic exercise, anaerobic exercise can help you to burn calories and reduce your body fat, and it can also help in building lean muscle mass.

Considerations

To reduce your risks for injuries and increase your chances of sticking to your fitness routine, you should start out slowly with both aerobic and anaerobic exercise, recommends the University of Pittsburgh Medical Center. Begin with lower intensities, gradually increasing the intensity as your fitness level improves. For aerobic exercise, you can aim to reach and sustain your target heart rate for up to 30 minutes during each workout. You should always consult your doctor before starting an exercise routine.



Strength training: Get stronger, leaner, healthier

Strength training is an important part of an overall fitness program. Here's what strength training can do for you — and how to get started.

By Mayo Clinic staff

You know exercise is good for you. Ideally, you're looking for ways to incorporate physical activity into your daily routine. If your aerobic workouts aren't balanced by a proper dose of strength training, though, you're missing out on a key component of overall health and fitness. Despite its reputation as a "guy" or "jock" thing, strength training is important for everyone. With a regular strength training program, you can reduce your body fat, increase your lean muscle mass and burn calories more efficiently.

Use it or lose it

Muscle mass naturally diminishes with age. "If you don't do anything to replace the lean muscle you lose, you'll increase the percentage of fat in your body," says Edward Laskowski, M.D., a physical medicine and rehabilitation specialist at Mayo Clinic, Rochester, Minn., and co-director of the Mayo Clinic Sports Medicine Center. "But strength training can help you preserve and enhance your muscle mass — at any age."Strength training also helps you:

•   Develop strong bones. By stressing your bones, strength training increases bone density and reduces the risk of osteoporosis.

•   Control your weight. As you gain muscle, your body gains a bigger "engine" to burn calories more efficiently — which can result in weight loss. The more toned your muscles, the easier it is to control your weight.

•   Reduce your risk of injury. Building muscle helps protect your joints from injury. It also contributes to better balance, which can help you maintain independence as you age.

•   Boost your stamina. As you get stronger, you won't fatigue as easily.

•   Manage chronic conditions. Strength training can reduce the signs and symptoms of many chronic conditions, including arthritis, back pain, depression, diabetes, obesity and osteoporosis.

•   Sharpen your focus. Some research suggests that regular strength training helps improve attention for older adults.

Consider the options

Strength training can be done at home or in the gym.Consider the options:

•   Body weight. You can do many exercises with little or no equipment. Try push-ups, pull-ups, abdominal crunches and leg squats.

•   Resistance tubing. Resistance tubing is inexpensive, lightweight tubing that provides resistance when stretched. 

•   Free weights. Barbells and dumbbells are classic strength training tools.

•   Weight machines. Most fitness centers offer various resistance machines.



Metabolism and Weight Loss: How You Burn Calories

Find out how metabolism affects weight, the truth behind slow metabolism and how to burn more calories.

By Mayo Clinic staff

You've probably heard people blame their weight on a slow metabolism, but what does that mean? Is metabolism really the culprit? And if so, is it possible to rev up your metabolism to burn more calories?While it's true that metabolism is linked to weight, it may not be in the way you expect. In fact, contrary to common belief, a slow metabolism is rarely the cause of excess weight gain. Although your metabolism influences your body's basic energy needs, it's your food and beverage intake and your physical activity that ultimately determine how much you weigh.

Metabolism: Converting food into energy

Metabolism is the process by which your body converts what you eat and drink into energy. During this complex biochemical process, calories in food and beverages are combined with oxygen to release the energy your body needs to function. Even when you're at rest, your body needs energy for all its "hidden" functions, such as breathing, circulating blood, adjusting hormone levels, and growing and repairing cells.The number of calories your body uses to carry out these basic functions is known as your basal metabolic rate — what you might call metabolism. Several factors determine your individual basal metabolic rate:

•   Your body size and composition. The bodies of people who are larger or have more muscle burn more calories, even at rest.

•   Your sex. Men usually have less body fat and more muscle than do women of the same age and weight, burning more calories.

•   Your age. As you get older, the amount of muscle tends to decrease and fat accounts for more of your weight, slowing down calorie burning.Energy needs for your body's basic functions stay fairly consistent and aren't easily changed. Your basal metabolic rate accounts for about 60 to 75 percent of the calories you burn every day.In addition to your basal metabolic rate, two other factors determine how many calories your body burns each day:

•   Food processing (thermogenesis). Digesting, absorbing, transporting and storing the food you consume also takes calories. This accounts for about 10 percent of the calories used each day. For the most part, your body's energy requirement to process food stays relatively steady and isn't easily changed.

•   Physical activity. Physical activity and exercise — such as playing tennis, walking to the store, chasing after the dog and any other movement — account for the rest of the calories your body burns up each day. Physical activity is by far the most variable of the factors that determine how many calories you burn each day.

Metabolism and weight

It may be tempting to blame your metabolism for weight gain. But because metabolism is a natural process, your body generally balances it to meet your individual needs. That's why if you try so-called starvation diets, your body compensates by slowing down these bodily processes and conserving calories for survival. Only in rare cases do you get excessive weight gain from a medical problem that slows metabolism, such as Cushing's syndrome or having an underactive thyroid gland (hypothyroidism).

Unfortunately, weight gain is most commonly the result of eating more calories than you burn.

To lose weight, then, you need to create an energy deficit by eating fewer calories, increasing the number of calories you burn through physical activity, or both. With a regular strength training program, you can reduce your body fat, increase your lean muscle mass and burn calories more efficiently.



Exercise and the Heart

Dr. Kerry J. Stewart, Professor of Medicine, Division of Cardiology, Johns Hopkins School of Medicine Dr. Stewart’s clinical and research interests include cardiovascular disease rehabilitation and prevention, and peripheral arterial disease.  

How exercise helps the heart

Exercise has many positive effects on heart health. A regular exercise routine can help:

•   Lower blood pressure

•   Lessen risk of developing diabetes

•   Maintain healthy body weight

•   Reduce inflammation throughout the body

“One of the key benefits of exercise is that it helps to control or modify many of the risk factors for heart disease,” says Dr. Kerry J. Stewart, Professor of Medicine, Division of Cardiology, Johns Hopkins School of Medicine. “Smoking is another big factor for heart disease, and if you exercise regularly you’re unlikely to take on a bad habit like smoking, or quit if you already are a smoker.”

Additional benefits of exercise:

•   Improves the muscles’ ability to pull oxygen out of the blood, reducing the need for the heart to pump more blood to the muscles

•   Reduces stress hormones that can put an extra burden on the heart

•   Works like a beta blocker to slow the heart rate and lower blood pressure

•   Increases high-density lipoprotein (HDL) or “good” cholesterol and helps control triglycerides

A number of studies have also shown that people who exercise regularly are less likely to suffer a sudden heart attack or other life-threatening cardiac event.

While exercise has benefits in and of itself, the best way to prevent heart disease is to combine exercise with a healthy diet. Exercise alone can help with weight loss over a long period of time. But a short-term approach is to reduce the number of calories you take in through diet, while increasing the calories you use through exercise.

Ideal exercise for the heart

The best exercise has a positive effect on the heart and improves the skeletal muscle system. The American Heart Association and the American College of Sports Medicine both recommend combining aerobic exercise (jogging, swimming, biking) with resistance training (moderate weightlifting). Together, these two categories of exercise produce the greatest benefit for preventing and managing heart disease.

Exercise and pregnancy

If you’re having a healthy pregnancy, and you exercised regularly before you were pregnant, it’s beneficial to keep up a moderate routine. This regimen can include walking, swimming or bike riding. You’ll continue to receive the same cardiovascular benefits.If you’re pregnant and everyday exercise has not been part of your life, you should probably stick with a milder exercise. In both instances, it makes sense to seek advice from your physician.

Sources for exercise intelligence

The National Institute of Health, the American Heart Association, and the American College of Sports Medicine are all good sources for assistance in choosing the right exercise routine. Johns Hopkins has a clinical exercise center which offers medically supervised programs and exercise guidelines based on scientific evidence. We evaluate fitness levels and consider medical history before starting people on exercise regimens. There are similar medical fitness centers throughout the country.

How much exercise and how often?

General guidelines call for a combination of aerobic exercise and resistance training. Try to get in a minimum of 30 minutes of aerobic exercise such as walking, cycling or swimming at least five days a week. Do moderate weightlifting to tone muscles and build muscle endurance at least twice a week, or frequently enough to cover the major muscle groups.

How do you know when you’re making progress?

There are many ways to chart your exercise progress. Three of the most common are target heart rate for aerobic exercise, number of repetitions for weight training, and fat vs. muscle body composition.

•   Target heart rate – The more fit you are, the harder you’ll need to work to reach your target heart rate. For example, in the first month you may need to walk 3 mph to reach a heart rate of 120, while in the second month in order to reach the same heart rate, you need to walk 4 mph or find a steeper hill. Your fitness is improved and your heart is working more efficiently.

•   Reps – The more weight you can lift 12-15 times without straining, the stronger and more durable your muscles are. For example, you start out struggling to curl a 15-lb. dumbbell 15 times, and then add three to five pounds when it becomes easy.

•   Body composition – Exercise more and your body will change shape: you’ll lose fat, specifically around the waist, and gain muscle. A looser pair of pants or skirt is a distinct sign of progress.

Knowing when you’re overdoing it

Setting a target heart rate with a qualified trainer or health professional is the simplest way to keep your workout within a healthy range.

•   Stay within your target heart rate, and you’re working out at the right level.

•   Go above your target heart rate, and you’re probably working too hard.

•   Stay below your target, and you’re not working hard enough to gain the most cardiovascular benefit.An important sign of overwork is fatigue and soreness that stays with you longer than a day or two after you exercise. Any persistent pain could mean you’ve overused or have injured a muscle.

How to stick with an exercise routine

The key to a successful exercise routine is staying interested and motivated. Here are a few ways to keep exercise a lifelong habit:

•   Set aside a specific amount of time each day for exercise and work it into your schedule.

•   Work out with a friend. Or join a gym and work out in a group. Either scenario creates mutual support and healthy competition to keep things interesting.

•   Keep a simple log to chart your progress. Create your own record or graph on a spreadsheet, or use one of the many programs available on the Internet.

•   If you jog or cycle, use a heart rate meter or speedometer to help you set and reach goals.

Using exercise to tune up your cardiovascular health

“If we compare a person’s initial fitness response to testing, to responses three to six months later, we see progress,” says Dr. Stewart. “The oxygen consumption will be higher. The time on the treadmill will be longer. The heart rate and blood pressure will be lower. It’s like tuning up your engine. Only the engine is your heart and the body’s circulatory system for distributing blood, and it’s working more efficiently.”



Running/Bike Trail Directly Behind The Training Studio

http://legendarystrength.com/valentin-dikul/

There is a beautiful running/bike trail located directly behind our training studio. The trail is very wide, yet no cars are permitted. The trail takes you through a beautiful park where the trees provide some welcome shade. This is a perfect trail for running, jogging, biking, roller blading or just a cool down from an intensive workout at the studio.

The trail is also ideal for those interested in training for long distance runs.




Call

E-mail

Directions